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Abstract

In this introduction to the Least Squares (LS), Weighted Least
Squares (WLS) and Moving Least Squares (MLS) methods, we
briefly describe and derive the linear systems of equations for the
global least squares, and the weighted, local least squares approxi-
mation of function values from scattered data. By scattered data we
mean an arbitrary set of points in RY which carry scalar quantities
(i.e. a scalar field in d dimensional parameter space). In contrast
to the global nature of the least-squares fit, the weighted, local ap-
proximation is computed either at discrete points, or continuously
over the parameter domain, resulting in the global WLS or MLS
approximation respectively.
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1 LS Approximation

Problem Formulation. Given N points located at positions X; in
R? where i € [1...N]. We wish to obtain a globally defined function
f(x) that approximates the given scalar values f; at points x; in the
least-squares sense with the error functional J;g = ¥; || f(x;) — £i||%.
Thus, we pose the following minimization problem

min Y1 £(xi) — £, M

m 1

where f is taken from H&, the space of polynomials of total degree
m in d spatial dimensions, and can be written as

fx)=bx)"e=b(x)-c, @)
where b(x) = [b;(x),...,b¢(x)]T is the polynomial basis vector
and ¢ = [cq,...,¢;]7 is the vector of unknown coefficients, which

we wish to minimize in (1). Here some examples for golynomlal
bases: (a) form =2 and d =2, b(x) = [l,x,y,xz,)cy7 T (b) for
a linear fit in R3 n = 1, d = 3), b(x) = [1,x,y,2)7, and (c) for
fitting a constant in arbitrary dimensions, b(x) = [1]. In general,
the number k of elements in b(x) (and therefore in ¢) is given by

k= (‘i;,?, , see [Levin 1998; Fries and Matthies 2003].

Solution. We can minimize (1) by setting the partial derivatives
of the error functional J;g to zero, i.e. VJrg =0 where V =
[@/dct,...,0/dc;]T, which is a necessary condition for a mini-
mum. By taking partial derivatives with respect to the unknown co-
efficients cy,...,c, we obtain a linear system of equations (LSE)

from which we can compute ¢

dJs/dc; =0 ZZb] x;)| Te—f]=0
dJrs/dcy =0 Zzzu x;)| Te—fi]=0
8JLS/8ck:O ZZbk Xl C f,]

In matrix-vector notation, this can be written as

ZZb x;)[ Te— fil
2Z[b(x,-)b(x,-) c—b(x)fi] = 0.

i

Dividing by the constant and rearranging yields the following LSE
Y b(xi)b(xi) e =Y b(x)f;, 3)
i i

which is solved as
¢ =[Y b(x;)b(x;)
i

If the square matrix Azg = Y;b(x;)b(x;)T is nonsingular (i.e.
det(Ars) # 0), substituting Eqn. (4) into Eqn. (2) provides the
fit function f(x). For small k (k < 5), the matrix inversion
in Eqn. (4) can be carried out explicitly, otherwise numerical
methods are the preferred tool, see [Press et al. 1992] I In our
applications, we often use the Template Numerical Toolkit (TNT) 2.

1 'Y b(x)fi. )

i

Example. Say our data points live in R? and we wish to fit a
quadratic, blvarlate polynom1a1 ie. d =2, m =2 and therefore

b(x) = [1,x,y,x2,xy,5*]" (see above), then the resulting LSE looks
like this

1 xé~ Vi xiz xéyi yiz2 1 1
oo )513 iy x| e x;
Z Yi o Xiyi o Yj X Vi xzy, y, 3| Z Vi f;
X2 ¥ P2y x2 2 leq| — 2 |/
N T i3 ﬁyé i% L I
xi%’i X; yzi X%i xiyé‘ % l* Cs Xi)zfi
Vi Xiyi Vi X7 yio Xiy; Yi ‘6 Yi

Consider the set of nine 2D points P; ={(1,1), (1,-1), (-1,1), (-1,-1),
(0,0, (1,0), (-1,0), (0,1), (0,-1)} with two sets of associated func-
tion values fi' ={1.0, -0.5, 1.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0} and
f,-2 ={1.0, -1.0, 0.0, 0.0, 1.0, 0.0, -1.0, -1.0, 1.0}. Figure 1 shows
the fit functions for the scalar fields fl-1 and fiz.

Vat the time of writing this report, [Press et al. 1992] was available online
in pdf format through http://www.nr.com/
’http://math.nist.gov/tnt/



Figure 1: Fitting bivariate, quadratic polynomials to 2D scalar
fields: the top row shows the two sets of nine data points (see text),
the bottom row shows the least squares fit function. The coefficient
vectors [cy,...,cq]T are [—0.834,—0.25,0.75,0.25,0.375,0.75]"
(left column) and [0.334,0.167,0.0,—0.5,0.5,0.0]7.

Method of Normal Equations. For a different but also very com-
mon notation, note that the solution for ¢ in Eqn. (3) solves the
following (generally over-constrained) LSE (B¢ = f) in the least-
squares sense

b7 (x1) fi
pofe=1 1], )
b7 (xy) N
using the method of normal equations
B'Bec = B'f
¢ = (B'B)'BTt. (6)

Please verify that Eqns. (4) and (6) are identical.

2 WLS Approximation

Problem Formulation. In the weighted least squares formulation,
we use the error functional Jy s = Y; 0 (|K—x||) || f(xi) — £l for
a fixed point X € R, which we minimize

min Y 0(|x—xil) [I£(x) — £ll*. @)
Felln i

similar to (1), only that now the error is weighted by 0(d) where
d; are the Euclidian distances between X and the positions of data
points X;.

The unknown coefficients we wish to obtain from the solution
to (7) are weighted by distance to X and therefore a function of X.
Thus, the local, weighted least squares approximation in X is written
as

Jx(x) =b(x)Te(®) =b(x) (), ®)

and only defined locally within a distance R around X, i.e.
Ix—X|| <R.

Weighting Function. Many choices for the weighting function 6
have been proposed in the literature, such as a Gaussian

0(d)—e ', ©

where h is a spacing parameter which can be used to smooth out
small features in the data, see [Levin 2003; Alexa et al. 2003].
Another popular weighting function with compact support is the
Wendland function [Wendland 1995]
0(d) = (1—d/h)*(4d/h+1). (10)
This function is well defined on the interval d € [0, 4] and further-
more, 8(0) =1, 8(h) =0, 8'(h) =0 and 8" (1) = 0 (C? continuity).
Several authors suggest using weighting functions of the form
1
0(d)=—5——=.
@)=z

Note that setting the parameter € to zero results in a singularity at
d = 0, which forces the MLS fit function to interpolate the data, as
we will see later.

1)

Solution. Analogous to Section 1, we take partial derivatives of the
error functional Jy s with respect to the unknown coefficients ¢(X)

Y. 6(di) 2b(x))b(x)) e(x) ~ fi] =

2Y 6(d)b(xi)b(x;)" e(X) ~ 0(di)b(x;)fi] = 0,
where d; = ||X —x;||. We divide by the constant and rearrange to
obtain

L 0(dib(xi)b(x;)" ¢(X) = }_ 0(di)b(xi) i, (12)

and solve for the coefficients

c(X) = [Ze(di)b(xi)b(xi)T} 'Y 0(di)b(x)f:- (13)

1

Obviously, the only difference between Eqns. (4) and (13) are
the weighting terms. Note again though, that whereas the coef-
ficients ¢ in Eqn. (4) are global, the coefficients ¢(X) are local
and need to be recomputed for every X. If the square matrix
Awrs = Y, 0(d))b(x;)b(x;)T (often termed the Moment Matrix)
is nonsingular (i.e. det(Awrs) # 0), substituting Eqn. (13) into
Eqn. (8) provides the fit function fx(x).

Global Approximation using a Partition of Unity (PU). By fit-
ting polynomials at j € [1...n] discrete, fixed points X; in the pa-
rameter domain €2, we can assemble a global approximation to our
data by ensuring that every point in Q is covered by at least one
approximating polynomial, i.e. the support of the weight functions
6; centered at the points X; covers Q

Q= supp(6))-
J

Proper weighting of these approximations can be achieved by con-
structing a Partition of Unity (PU) from the 6; [Shepard 1968]

_ 6k
Yo 6(x) ’

where }; @j(x) = 1 everywhere in Q. The global approximation
then becomes

®;(x) (14)

f(®) =Y 0;(x) b(x)"e(x;). (15)
J



A Numerical Issue. To avoid numerical instabilities due to possi-
bly large numbers in Ay g it can be beneficial to perform the fitting
procedure in a local coordinate system relative to X, i.e. to shift X
into the origin. We therefore rewrite the local fit function in X as

fx(x) =b(x—%)T¢(X) =b(x —X) - ¢(X), (16)
the associated coefficients as

e(X) =Y. 0(d)b(x; —X)b(x; —X)7] 'Y 0(di)b(x; —%)f;, (17)
and the global approximation as

fx) =Y 0;(x) b(x—%)) e(x)). (18)
J

3 MLS Approximation and Interpolation

Method. The MLS method was proposed by Lancaster and Salka-
uskas [Lancaster and Salkauskas 1981] for smoothing and interpo-
lating data. The idea is to start with a weighted least squares for-
mulation for an arbitrary fixed point in R?, see Section 2, and then
move this point over the entire parameter domain, where a weighted
least squares fit is computed and evaluated for each point individu-
ally. It can be shown that the global function f(x), obtained from a
set of local functions

F(®) = fx(x), min Y O(lx—xil]) lA(xi) = A7 (19)
SxElln i

is continuously differentiable if and only if the weighting function
is continuously differentiable, see Levins work [Levin 1998; Levin
2003].

So instead of constructing the global approximation using
Eqn. (15), we use Eqns. (8) and (13) (or (16) and (17)) and con-
struct and evaluate a local polynomial fit continuously over the en-
tire domain €, resulting in the MLS fit function. As previously
hinted at, using (11) as the weighting function with a very small €
assigns weights close to infinity near the input data points, forcing
the MLS fit function to interpolate the prescribed function values in
these points. Therefore, by varying € we can directly influence the
approximatimg/interpolating nature of the MLS fit function.

4 Applications

Least Squares, Weighted Least Squares and Moving Least Squares,
have become widespread and very powerful tools in Computer
Graphics. They have been successfully applied to surface recon-
struction from points [Alexa et al. 2003] and other point set surface
definitions [Amenta and Kil 2004], interpolating and approximating
implicit surfaces [Shen et al. 2004], simulating [Belytschko et al.
1996] and animating [Miiller et al. 2004] elastoplastic materials,
Partition of Unity implicits [Ohtake et al. 2003], and many other
research areas.

In [Alexa et al. 2003] a point-set, possibly acquired from a 3D
scanning device and therefore noisy, is replaced by a representa-
tion point set derived from the MLS surface defined by the input
point-set. This is achieved by down-sampling (i.e. iteratively re-
moving points which have little contribution to the shape of the
surface) or up-sampling (i.e. adding points and projecting them to
the MLS surface where point-density is low). The projection proce-
dure has recently been augmented and further analyzed in the work
of Amenta and Kil [Amenta and Kil 2004]. Shen et. al [Shen et al.
2004] use an MLS formulation to derive implicit functions from
polygon soup. Instead of solely using value constraints at points
(as shown in this report) they also add value constraints integrated
over polygons and normal constraints.
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Figure 2: The MLS surface of a point-set with varying density (the
density is reduced along the vertical axis from top to bottom). The
surface is obtained by applying the projection operation described
by Alexa et. al. [2003]. Image courtesy of Marc Alexa.



