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Abstract

We introduce an over-sketching interface for feature-preserving surface mesh editing.
The user sketches a stroke that is the suggested position of part of a silhouette of
the displayed surface. The system then segments all image-space silhouettes of the
projected surface, identifies among all silhouette segments the best matching part,
derives vertices in the surface mesh corresponding to the silhouette part, selects
a sub-region of the mesh to be modified, and feeds appropriately modified vertex
positions together with the sub-mesh into a mesh deformation tool. The overall
algorithm has been designed to enable interactive modification of the surface –
yielding a surface editing system that comes close to the experience of sketching 3D
models on paper.
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1 Introduction

The process of generating 3D shapes in engineering or content creation typi-
cally goes through several design cycles, with the team meeting to do design
reviews : renderings of the shapes are viewed on paper or a screen, and design-
ers indicate necessary changes. Oftentimes designers sketch replacements of
feature lines onto the rendering. This information is then taken as the basis of
the next cycle of modifications to the shape. If the shape is represented digi-
tally it seems natural to use the sketches as input for a system that computes
the necessary deformation automatically.

In [1] we have presented such a tool for surface mesh editing motivated by
design reviews: given nothing but the over-sketch of a feature line, it auto-
matically deforms the mesh geometry to accommodate the indicated modifi-
cation. It builds on mesh deformation tools [2,3], and the main challenge is to
solve the feature extraction and correspondence problem automatically and in
real-time.
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Laplacian Surface Editing [2], but also most other recent mesh deformation
techniques (e.g., [4,5]) require the selection of: handle vertices, the displace-
ment for these handle vertices and a region of interest (ROI), representing the
part of the mesh to be modified to accommodate the displaced handle vertices.
Our system computes this information from the over-sketched feature line in
fractions of a second. The steps described below comprise our system (see also
Fig. 1):

(1) Based on the screen projection of the shape, a subset of pixels lying on
potential feature lines is identified. These pixels are then segmented and
converted to image-space polylines as the set of candidate feature lines.

(2) The user-sketch is matched against all polylines to find the corresponding
part on a feature line.

(3) Based on the correspondence in image-space, a set of handle vertices in
the surface mesh is selected. The image-space projection of these vertices
covers the detected part of the feature line.

(4) New positions for the handle vertices are derived from the displacements
in image-space between the projection of the handle vertices and the
user’s sketch; these are the necessary displacements.

(5) A part of the surface mesh around the handle vertices, computed by
region growing, is defined as the ROI.

In steps 1 and 2 the user sketch is identified with a segment of a feature line in
the current view of the model. These steps are identical to our earlier version of
this work and allow modifying a parameter that represents a trade-off between
matching based on proximity and similarity. We have verified in a user study
that there is no “right” answer to how this parameter should be chosen. Also,
we discuss more background material, better explaining and motivating our
choices.

In steps 3, 4, and 5 we compute the necessary input for shape deformation, and
we have experimented with variants for all of them since our earlier version.
We have significantly improved the algorithm for step 3, mostly for the case
of many vertices being projected close to the feature line (see section 4.3).
Several reviewers and experts had suggested an alternative assumption for
the fourth step, namely not simply assuming constant depth for the modified
vertex positions, but intelligently extending the features of the model. We
have implemented this variant and performed a user study, comparing the
two versions. We have found that most users actually prefer constant depth
(see section 6). Also for the fifth step we have experimented with another
variant, however, we are most satisfied with the original version.
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Fig. 1. Algorithm pipeline. Top row, left to right: a) user-sketch, b) image-space
silhouettes, c) retained silhouettes after proximity culling, d) handle estimation;
Bottom row, left to right: e) correspondences and ROI estimation by bounding
volumes, f) setup for Laplacian Surface Editing, g) and h) deformation result. Note
that the user only sees a), g) and h).

2 Related Work and System Design

In this chapter, we briefly discuss techniques related to our system and explain
some of our design choices.

2.1 Sketch-based Interfaces for Mesh Editing

Sketch-based interfaces are a very popular method for creation and deforma-
tion of 3D surface meshes [6–8]. Deriving the parameters for mesh deformation
from sketches only is not new: Kho and Garland [9] (see Fig. 2) derive ROI and
handle vertices from sketching onto the projected shape, essentially implying
a skeleton for a cylindrical part. A second stroke then suggests a modification
of the skeleton, and the shape is deformed according to the deformed skeleton.

However, according to Hoffman and Singh [10], we recognize objects mainly by
a few feature lines, namely silhouettes and concave creases. Since the process
of paper-based sketching relies exactly on these features, we feel it is more
natural to use them as the basis for our over-sketching mesh deformation tool.

This line of thought is similar to Nealen et al. [3]. They have enhanced Lapla-
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Fig. 2. Sketching Mesh Deformations by Kho and Garland [9]. Left to right:
ROI with handle (black), suggested modification (red), and deformation result. Im-
ages courtesy of Youngihn Kho and Michael Garland.

cian Surface Editing techniques to work in the setting of prescribing new
silhouettes (see Fig. 3). This requires positional constraints defined on mesh
edges and finding the correspondence between a pre-selected silhouette of the
mesh and the over-sketched silhouette. In their system the user manually se-
lects the ROI and a part of one of the silhouettes as a pre-process.

Fig. 3. Left: Laplacian Surface Editing (LSE) by Sorkine et al. [2]. Right: A
Sketch-Based Interface for Detail-Preserving Mesh Editing by Nealen
et al. [3].

In our system, all these selections are now automated; the user only provides
a single stroke, from which handle and ROI are estimated (see Fig. 1).

2.2 Image-Space Silhouettes

We have also observed that computing silhouettes from the mesh representa-
tion (i.e. in object-space) has problems: the silhouette path on the mesh might
fold onto itself when projected to image-space, i.e. a point of the silhouette
in image-space could map to several pieces of the silhouette on the mesh. As
a result, the mapping from the sketch to handle vertices could be ill-defined.
More generally, the complexity of the silhouette path on the surface is not nec-
essarily reflected in its image-space projection, making a reasonable mapping
from the sketch to vertices on the mesh difficult.
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Because of these problems we detect silhouettes in image-space, and then try
to identify vertices in the mesh that would map onto the detected region in
image-space. Image-space silhouettes are usually obtained using edge detection
filters on the depth map and/or normal map of the shape [11]. Typically,
the conversion from raster-based edge pixels to vector-based polylines is then
achieved by applying some morphological operations (e.g. thinning) and finally
tracing (e.g. chain codes). We have decided to restrict the set of feature lines
to discontinuities in the depth map. This approach shows a feasible trade-off
between quantity of feature lines vs. their significance (see Fig. 4).

Fig. 4. Feature lines. From left to right: depth map discontinuities, normal map
discontinuities, combined discontinuities, flat shaded scene.

2.3 Edge Detection

Considering an image as a function f(x, y), edges are described by discon-
tinuities of f , which can be detected by the examination of derivatives of
f . Here the most common approach is to compute (approximations of) local
derivatives by applying convolution filters and to classify edges based on some
threshold θ.

2.3.1 Convolution Filters

The 1st derivative can be obtained by convolution kernels that compute the
horizontal and vertical gradient:

Gx =


0 0 0

−1 0 1

0 0 0

 , Gy =


0 1 0

0 0 0

0 −1 0

 . (1)
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Edge energy E and direction Θ are then defined by

E =
√
Gx

2 +Gy
2, Θ = arctan

(
Gx

Gy

)
. (2)

The Sobel operator enhances the 2D gradient kernels by an implicit smoothing
operation, where the gradient is computed by a weighted average over the 8-
neighborhood to reduce the effect of noise:

Sx =


−1 0 1

−2 0 2

−1 0 1

 , Sy =


1 2 1

0 0 0

−1 −2 −1

 . (3)

The discrete Laplace filter is an edge detection operator that computes an
approximation of the local 2nd derivative (Laplacian) of image values – here
based on the 4-neighborhood:

Lxy =


0 1 0

1 −4 1

0 1 0

 (4)

Ballard and Brown [12] note that ”the Laplacian has fallen in disuse”, since
”(a) useful directional information is not available, and (b) the Laplacian,
being an approximation to the second derivative, doubly enhances any noise
in the image”. On the other hand, the signed Laplacian can be used to detect
pixels in the foreground of discontinuities. Since these pixels are spanned only
by the vertices we consider to be handle candidates, we chose to use the
discrete Laplace filter on a 4-neighborhood to classify our silhouette pixels,
and determine the silhouette orientation by computing gradient directions
(see Eqn. 2). Finally, we want to stress that noise is not an issue, since we are
dealing with synthesized scenes that virtually lack any noise.

2.3.2 Canny Algorithm

Edge energies retrieved by the application of convolution filters are commonly
used to classify edge pixels by the application of a threshold θ. The Canny
algorithm [13,14] applies gaussian smoothing, and computes edge energies and
directions using the Sobel operator. Edge pixels are then classified by a hys-
teresis approach. In a first step, pixels whose energy exceeds θhigh are classified
to be edge pixels. These initial edges are then expanded by tracing them in
respect to their gradient direction until their energy falls below θlow. Although
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Fig. 5. Edge detection. Top row, from left to right: shaded model, depth map.
Bottom row, left to right: result of the 4-neighborhood Laplace filter, and output of
the Canny Algorithm. Please note the disconnected silhouettes at the Elephant’s
forehead and ear in the output of the Canny Algorithm.

the Canny operator serves well in edge detection for generic images, it fails
in extracting meaningful silhouettes from synthetic depth images: since edges
are traced disregarding their depth continuity, the algorithm yields false con-
nectivity for overlapping silhouettes (see Fig. 5).

Considering thresholds for the classification of edge pixels, we noticed that
in our scenario the application of a single threshold already yields satisfying
results. Following the idea to create polylines from pixels by tracing them, we
developed a custom algorithm that is described in section 4.1.2.

2.4 Polyline Simplification

Using edge detection, we implemented a silhouette extraction algorithm that
extracts silhouette polylines as strings of image space coordinates. We use
simplified polyline delegates to reduce the complexity of the handle estimation.
Therefore, we can drop the silhouettes’ depth information, since the handle is
estimated with the 2D user sketch. We use the Douglas-Peucker algorithm [15],
that subsequently refines an initially coarse model of a polyline by adding
vertices with respect to their displacement from the current approximation.
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This algorithm has a runtime complexity of O(n log2n) and terminates if a
given error is met (see Fig. 6).

Fig. 6. Douglas-Peucker Algorithm [15]. Left to right, top to bottom: original
polyline and first three levels of its recursive approximation.

2.5 Handle Retrieval

Matching a segment of a silhouette in image-space to the user-sketch requires a
metric that defines the distance between polylines. This metric should resemble
human perception of similarity. We have found that the important features
are proximity to the candidate feature lines and intrinsic shape (see Fig. 7).
By intrinsic shape we mean similarity regardless of position, (uniform) scale
and orientation in space.

Fig. 7. Handle estimation due to the similarity of handle candidate (red) and tar-
geted deformation (green).
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We use a method by Cohen and Guibas [16] to maximize this intrinsic shape
similarity. They perform partial matching of two planar polylines under sim-
ilarity transformations (isotropic scaling, rotation, and translation) by min-
imizing differences in their turning angle over arc length representation. Al-
though they manage to reduce their matching algorithm’s runtime complexity
from O(m3n3) to O(m2n2) (here: for m silhouette polyline vertices and n user-
sketch vertices), it can not achieve real-time performance in our setting. Using
their scoring function, we relax our solution by testing only a discrete subset
of all possible matches in O(m+ n) per match.

Finally, we retrieve the handle mesh vertices corresponding to the silhouette
segment by selecting vertices which are close to the handle in image-space.
The displacements for these vertices are derived from displacements in image-
space.

2.6 Mesh Segmentation

We consider defining the ROI as a form of mesh segmentation, for which vari-
ous geometry-based methods are described (see [17,18]), and even image-based
approaches are conceivable (see [19,20]). Whereas image-based approaches ob-
viously suffer from occlusion, geometry-based methods are only restricted by
our requirement for interactive response times.

Katz and Tal [17] describe a geometry-based method for binary mesh segmen-
tation that is extended to a hierarchical k-way case. Their segmentation uses
the criterions of geodesic and angular distance between faces of a mesh. Based
on these criterions they compute probabilities for the mesh faces to belong
to a certain segment. According to these probabilities the faces are then clas-
sified to belong to either a certain segment, or a fuzzy region between some
segments. The final segment boundaries are determined within the respective
fuzzy regions using an undirected flow network graph. Unfortunately, this ap-
proach implies an all-pairs shortest path problem over all vertices of a mesh,
which is why this method is too complex to be applied in real-time.

The method described by Ji et al. [18] (see Fig. 8) grows an initial segmenta-
tion, which can be implemented efficiently. The growing is constrained by an
improved isophotic metric, that determines the distance between two points
on the surface with respect to their geodesic distance, the difference of their
normals, as wells as an augmented directional curvature along edges. They use
this mesh segmentation approach to implement a framework for feature pre-
serving mesh editing using Laplacian Surface Editing (LSE) [2], where the user
selects the ROI by marking fore- and background with strokes, and sketches
its deformation relative to the foreground stroke. However, it is unclear how to
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supply an initial segmentation solely based on the mesh and the user-sketch.

Fig. 8. ROI selection using Easy Mesh Cutting by Ji et al. [18]. Left: ROI (purple,
with blue boundary) selection by a foreground stroke (green), and background stroke
(red). Middle: Deformation hint (light blue). Right: Deformation result. Images
courtesy of Ji et al.

In our application we consider topologically growing the ROI from the handle
vertices to be a feasible method, and we use a specific set of bounding volumes
(spheres) to constrain this process both spatially and topologically.

2.7 Mesh Deformation

Once we have defined handle vertices, their transformed target positions and
the region of interest, the application of Laplacian Surface Editing is straight-
forward (please see [2,21] for details). Note that the user only provides 2D
input and we have found that preserving the scale in depth leads to more
intuitive results than scaling isotropically in 3D. In other words, we retain
handle vertex positions in depth, even if their transformed target positions re-
fer to a 2D isotropic scaling operation that might be extended onto the third
dimension. Interestingly, several of the refinements of Laplacian Surface Edit-
ing (such as [2]) favor isotropic scaling. For this reason we are currently using
an approach in the spirit of Lipman et al. [22], where local transformations
of each frame are estimated a priori (please see Fig. 9). We like to stress that
other mesh deformation tools could be used as well.

3 Interface

Our user interface consists of a single rendering window with an orthogonal
projection, embedded controls for navigation, and the capability of drawing
viewport-aligned strokes (enabled by default). Holding a meta key activates
the embedded navigation controls, with which the user can drag the mesh
along the horizontal and vertical axis, rotate it by tapping beside it and drag-
ging the mouse, and scale the current projection by clicking and dragging two
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Fig. 9. LSE refinements. Top left: deformation setup with ROI (dark gray), static
anchors (yellow), and handle vertices (green). Top right: straightforward application
of LSE (with target vertices in red). Bottom left: refined deformation according to
Sorkine et al. [2] (by estimating rotation and isotropic scale introduced to the
Laplacians). Bottom right: refined deformation according to Lipman et al. [22].

invisible sliders on the left and right screen boundaries.

If the user has determined an appropriate view, placing a sketch near the
silhouette implies a deformation. The system identifies the appropriate pa-
rameters (see following sections) and then displays the result. The user has
the option to approve this deformation or to apply refinements by oversketch-
ing the new silhouette path.

4 Algorithm

The user sketches the desired deformation result as a view-dependent poly-
line. This polyline simply consists of tracked mouse events, and we apply the
Douglas-Peucker algorithm to obtain a simplified version (see Section 2.4). In
the following sections we detail the steps of our algorithm.

4.1 Silhouette Retrieval

In this section, we describe how to retrieve image-space 2D polylines that
describe discontinuities in the depth map (and therefore silhouettes) of the
scene using two steps of detection and extraction. We developed a method
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that exploits the properties of a noise-free synthetic scene to speed up our
algorithm, rather than relying on well established methods like the Canny
edge detector [13] or morphological operations.

4.1.1 Silhouette Detection

We determine discontinuities in the depth map by applying a 4-neighborhood
Laplacian edge detection filter on each pixel p, along with some threshold θp:

sil(p) := Lxy[depth(p)] > θp (5)

Note that we retrieve only edge pixels that describe the foreground of a dis-
continuity by using a signed comparison. Depending on the choice of θp, the
binary images retrieved consist of continuous silhouette paths (Fig. 10, left).

In our implementation, the depth range of the scene is mapped to [0, 2], while
the object’s bounding box is scaled to have unit diagonal and centered at unit
distance. With these values we have found θp ≈ 0.01 to be a good choice.

Note that the silhouette paths can be more than a single pixel wide, especially
in areas of high curvature.

Fig. 10. Depth map with binary overlay from Eqn. 5 (left), degenerated silhouette
feature (top, right), silhouette caused by a surface crease (bottom, right)
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4.1.2 Silhouette Extraction

For the subsequent handle estimation (Sec. 4.2), we need to convert the sil-
houette pixel paths into a set of image-space polylines. Aiming for simplicity
and speed, we developed a greedy segmentation algorithm, which relies only
on local criteria for silhouette tracing.

The basic idea of tracing connected components of the silhouettes is that
silhouette pixels in the image are neighbors on a silhouette segment if they
have similar depth. In other words, two neighboring silhouette pixels a and b
are depth continuous if

cont(a, b) := ‖depth(a)− depth(b)‖ < θn. (6)

The silhouette pixels form a path that could be wider than a single pixel,
making the conversion to a poly-line ambiguous. Some approaches use the
morphological operation of thinning to correct this problem. However, apply-
ing morphological operations on the binary silhouette image may result in
silhouette paths that are continuous in 2D, but discontinuous in depth. This
is illustrated in Fig. 11b: the silhouette terminates on the center pixel fc if n7

is removed by erosion, and ‖depth(fc)−depth(n0)‖ exceeds θn. In this case, n7

is exactly the pixel that stitches the silhouette together. Instead of developing
depth sensitive morphological operations, we solve this issue by using a local
tracing criterion.

The idea for the local tracing is to favor silhouette paths with lower curvature
in image-space, i.e. straight silhouettes are favored over ones with sharp cor-
ners. The criterion is implemented as a priority map relative to the direction
from which we entered the current silhouette pixel (see Figs. 11 and 12: a
smaller number in the mask around fc indicates higher priority). Based on
the priority mask, silhouette edge paths are formed by selecting from depth
continuous silhouette pixels.
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n
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n
7

Fig. 11. Tracing the silhouette path near a degenerate feature (from left to right):
a) Elephant’s ear, b) tracing step (fc → n7) with priority map, neighborhood in-
dex (bottom left) and a degenerate feature in light grey (which is removed in a
pre-processing step), c) final silhouette path, d) extracted silhouette.
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However, correctly identifying endpoints of silhouette paths requires extra
attention. A silhouette path ends in surface creases and it also ends in image-
space when the silhouette is occluded by a part of the surface that is signif-
icantly closer to the viewer. Our basic tracing algorithm correctly identifies
these two cases, however, it might also classify sharp corners as endpoints
(Fig. 10). To avoid terminating in sharp corners, we remove the tips of silhou-
ettes. Note that surface creases are surrounded by pixels with almost similar
depth in the depth image, while tips of the silhouette are not (see Fig. 10).
So we remove tips by repeatedly removing silhouette pixels if they have less
than two depth continuous 8-neighbors in the depth image (see Fig. 11, sec-
ond image). Furthermore, the basic algorithm will arbitrarily select silhouette
paths if the respective neighboring pixels happen to have almost similar depth
(Fig. 12, left). Therefore, as an additional criterion for identifying connected
silhouette pixels we use consistency of the surface normals along the silhou-
ette. As we are only interested in the image-space orientation of the normals,
it is sufficient to consider the gradients of the depth map (Fig. 12).
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3 3

B AA B
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n
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n
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n
6
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n
7

Fig. 12. Maintaining depth map gradient orientation. Path A shows how our tracing
algorithm maintains depth map gradient orientation with respect to the tracing
direction (left image: gradients shown as arrows per pixel). If we disregard these
gradients, the tracing algorithm will trace a non-intuitive silhouette path, in this
case path B, due to the preferred tracing direction. Note though, that the silhouette
part from path B, which is missing in path A, will be a separate silhouette segment
after all silhouettes have been traced.
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In detail, our silhouette extraction algorithm creates silhouette polylines S :
{(v1, d1), ..., (vn, dn)} described by vertices vi ∈ R2 and depth values di ∈ R, by
scanning the binary silhouette image row by row, and extracting feature paths
for any encountered silhouette pixel fc : (vc, dc) according to the following
algorithm:

(1) Create S = ∅.
(2) Append fc to S.
(3) Determine next silhouette pixel fn, where

a) fn is adjacent to fc,
b) fn is depth continuous to fc according to Eqn.6,
c) fn maintains the orientation of depth map gradients w.r.t. the current

tracing direction (see Fig. 12), and
d) the tracing direction turn caused by fn is minimal.

(4) Mark fc as a non-silhouette pixel.
(5) Assign fn to fc.
(6) Repeat on 2. until fc = NIL.

Note that a) and b) are determined by Eqns. 5, and 6 respectively, whereas c)
ensures continuity of the normals along the silhouette paths (see Fig. 12). Fur-
thermore, d) is the tracing criterion, navigating the tracing algorithm through
silhouette paths wider than a single pixel.

Since scanning the silhouette image row by row typically encounters a silhou-
ette somewhere inside its path, the tracing algorithm is applied twice for any
initial pixel, in opposite directions. Fig. 13 shows some results of our algorithm.

Fig. 13. Top row: models with their binary edge images, bottom row: extracted and
segmented silhouette paths (shown wider than one pixel for illustration purposes).
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4.2 Handle Estimation

To derive the actual handle polyline (a subset of all silhouette polylines), we
introduce an estimation metric which reflects the likelihood that an arbitrary
silhouette segment is a good handle w.r.t. the user-sketch (target polyline).
As pointed out before, this scoring function relies on both proximity and
similarity.

First, we substitute the silhouette polylines by simplified delegates (polylines
as well, see [15]), and reduce the silhouettes by culling according to a proximity
criterion.

The criterion on similarity is derived from the Polyline Shape Search Prob-
lem (PSSP) described by Cohen and Guibas [16]. First, we compute Turning
Angle Summaries (TASs) {(s0, t0), ..., (sn, tn)} from the edges {e0, ...en} of the
target and silhouette polylines by concatenating tuples of edge lengths si and
cumulative turning angles ti, where

si =‖ ei ‖, ti =

](e0, 0) if i = 0

](ei−1, ei) + ti−1 if i > 0
(7)

Please note that these summaries lack the representation of absolute coor-
dinates, but they do retain the polyline arc length. Furthermore, rotating a
polyline relative to its head results in a shift of its TAS along the turning
angle axis, whereas isotropic scaling results in stretching its TAS along the
arc length axis (see Fig. 14).

0

π /2

-π /2

π

t

s

scale α, shift β

rotation γ

Ψ(s)

Θ(s)

Fig. 14. Left: the short, green target polyline, red silhouette, and blue best-match
shown as a subset of the red silhouette polyline. Right: arc length vs. cumulative
turning angle representations of target Ψ(s), silhouette Θ(s), and best-match poly-
lines.

We match the target polyline onto a single silhouette polyline, described by
its (isotropic) scale α and position (shift) β, by matching their Turning Angle
Summaries (Fig. 14). The match result MPSSP : (α, β, γ, R∗mod) is described
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by a prescribed α and β, an optimal rotation γ, and the matching score R∗mod.
Optimal rotation and matching score are computed by a modified version
of the scoring function from [16]. Using finite sums of differences, I1 and I2
describe the linear and squared differences between the piecewise constant
TASs Ψ(s) of the target and Θ(s) of the sihouette polylines (Fig. 14):

I1(α, β) =
∫ β+α

s=β

(
Θ(s)−Ψ

(
s− β
α

))
ds,

I2(α, β) =
∫ β+α

s=β

(
Θ(s)−Ψ

(
s− β
α

))2

ds.

(8)

Given the arc length l of the target polyline, we compute optimal rotation

γ = γ∗(α, β) =
I1
αl
, (9)

and matching score

R∗mod(α, β) =
1

αl

(
I2(α, β)

αl
−
(
I1(α, β)

αl

)2
)
. (10)

Cohen and Guibas retrieve matches for all segments (α, β) by using a topolog-
ical sweep algorithm [23] to match the respective Turning Angle Summaries
in scale/position space. However, since this approach needs O(m2n2) time for
m silhouette edges and n target edges, we decided to probe only a discrete
number of sample segments in Eqn. 10 in O(m+n) time per segment. Specifi-
cally, we match the target polyline to sample segments of a silhouette polyline
by discretely sampling α and β: the scale parameter α is varied between 0.25
and 2 at intervals of 0.05; the translation parameter β is sampled at intervals
of 0.01 of the screen dimension.

For the proximity criterion we compute the distances of corresponding end-
points of the two polylines, retrieving a near and far value Proxnear, Proxfar.
Then we apply a final scoring function on the obtained per-silhouette match
results:

R := 1/(1 + w1Proxnear + w2Proxfar + w3R∗mod)
2 (11)

Iterating over all silhouettes, we select the segment with the highest score, and
extract the deformation handle from the respective silhouette by using (α, β)
of its matching record MPSSP .
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4.3 Finding Handle/Target Correspondences

Given the polylines of deformation handle and target, we need to determine
the corresponding mesh vertices and their transformed positions respectively.

3 pixels

3 pixels

x

y
3 pixels

ε

eye
x

z

Fig. 15. Mesh vertices that are classified as handle members (blue circles) using one
bounding volume (red box) for each image-space handle pixel. Left: view from the
editor, right: view from top (silhouette indicated as a red line in both views).

Using both the image-space handle pixels, as well as the corresponding depth
map, we construct an object-space bounding volume for each handle pixel (see
Fig. 15). A mesh vertex is classified as a handle vertex if it lies in the union
of these bounding volumes.

Fig. 16. Instead of deforming meshes solely based on the handle vertices that we
retrieved by the bounding volumes (top row), we grow the set of handle vertices
to select more vertices of the region described by the handle polyline (bottom row,
please see text for details).
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If a user wants to deform the profile of regions of low curvature or even planes,
this approach only selects vertices in the foreground of such regions, since the
bounding volumes introduce a tolerance ε in depth. It is clear that this issue
cannot be solved by just using 2D bounding shapes (by omitting ε), since then
we also might select vertices that are disconnected. Thus we grow the set of
initially selected handle vertices by adding each vertex that a) is adjacent to a
handle vertex, and b) whose position in image space lies within the respective
projection of the bounding volumes (see Fig. 16).

The transformed positions for these handle vertices are computed by mapping
their handle-relative positions onto the target polyline. Specifically, we deter-
mine the position (s, d) for each handle vertex, where the arc length position
s is given by its orthogonal projection of length d. Both handle and target
polylines are parameterized uniformly in [0, 1] and the target position (s′, d′)
is scaled accordingly.

s'
d'

s d

Fig. 17. Mapping of handle relative arc length position s and diplacement d (red)
onto the target polyline (green).

4.4 ROI Estimation

To complete the deformation setup, we have to select the final ROI of the
mesh according to some context sensitive criterion. We grow the ROI from
the handle vertices. To control the expansion, we constrain the ROI to lie
within a union of bounding volumes, which consists of one volume per handle
vertex.

Specifically, we create a union of spheres, where each sphere center is located
at the position of the respective handle vertex. Each sphere radius is set to the
Euclidean distance dh,s between handle vertex and its transformed position.
We have experimented with a variety of functions rs = f(dh,s), but have found
that using rs = dh,s already yields satisfying results: when the user sketch is
far from the handle, using a larger sphere results in a larger ROI, yielding more
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Fig. 18. Automatic ROI selection (from left to right): a) After the user places a
sketch, the handle is estimated and correspondences are established. b) From these
correspondences, the ROI is grown within the union of spheres, starting from the
handle vertices (dark/red region, lower lip). c) Shows this for the camel lip example.
d) We use the obtained vertex sets handle, transformed handle and ROI as input
to the LSE algorithm. See text for more details.

deformable material (Fig. 18), which is a reasonable heuristic. To determine
the ROI, we define the handle vertices to be the initial ROI vertex set, and
grow this set by subsequently adding vertices of the mesh that are (a) adjacent
to the current ROI border, and (b) are inside the union of spheres.

5 Results

Fig. 19. The Mannequin modeling session.

The modeling sessions shown in Fig. 19 and 20 illustrate the ease of use:
after the user places a stroke, the system responds interactively, presenting a
deformation which generally corresponds to the user’s intent. All algorithmic
details, which are shown for illustration purposes in various figures in this
paper, are absent from the actual user interface.
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Fig. 20. Development of the Funny Camel. The modeling session took approx.
30 edits, which were applied from various viewing angles (not shown here).
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Our first implementation used in [1] exploited the programmability of modern
GPUs for edge extraction from the depth image. The resulting binary edge
image was read back into system memory to perform the segmentation.

We have experimented with this part of the implementation and found that a
CPU-only implementation has advantages: the access of data required in edge
extraction and segmentation is easier, which enables optimizations in the seg-
mentation code. The resulting implementation is faster and allows silhouette
detection and extraction during navigation. Thus the user is always aware of
the segmentation result, i.e. what are the potential feature lines to be modified
with the stroke. Other minor improvements in the code have further decreased
the computation time.

Model Feature Sil Hnd ROI LSE Sum Size Fig.

Bunny Ear 6 261 9 365 641 50432

CamelHead Lip 4 113 2 98 217 15782 18

Mannequin Nose 5 175 2 216 398 20402 19

Ear 5 22 4 193 224 37862 19

Table 1
Timings of our system for several models. All times are in msecs, and refer to
computing the silhouettes in the depth image, finding handle vertices, computing
the region of interested, and then setting up and solving the LSE. Size refers to the
system matrix.

Table 1 shows some timings obtained on a Intel Core 2 Duo 6600 processor with
2.4 GHz, 2GB memory and a two Nvidia 7900 GTX PCIe GPUs. To compare
the performance of the current system to that of our first implementation, we
remodeled roughly the same deformations as in [1], demonstrating a speed-up
between 2.5 and 4.5. The improved extraction and segmentation of image-
space silhouettes (column Sil) now takes only 1-5% of the processing time.
Handle estimation and finding handle/target correspondence (column Hnd)
depends on the density of silhouettes in the image, as well as the number of
model vertices and is the dominating factor of the UI part of the approach.
The column Size shows the dimensions of the sparse linear system, which is
factored and solved every time the user places a new stroke. This is the other
time consuming part and works interactively for ROIs up to a few thousand
vertices. Of course we could also reuse the factorization as described in [3],
however, this would require adding additional user interaction for choosing
this option.

22



6 Discussion

Each of the steps in our approach presents a trade-off between fidelity and
speed. While the requirement of interactive response certainly restricts the
algorithmic possibilities, it is clear that almost all over-sketches are inherently
ambiguous, even in the case of communication among humans – so it is unlikely
that an algorithm will consistently guess correctly according to the user’s
expectation.

We find that the extraction and segmentation of feature lines (silhouettes)
works in almost all practical cases. It might be interesting to extend the ex-
traction to normal discontinuities of of the surface, or even to more subtle
feature lines such as suggestive contours [24] and apparent ridges [25]. An-
other set of feature lines, though invisible from the rendering but known to
more experienced users, are the projections of skeleton curves used in models
rigged for animation. The information deduced by our system could then be
fed into modeling systems controlled by skeletons.

Fig. 21. Limitation of the handle estimation algorithm. Top row: handle estimations
due to shape similarity and respective deformation results; Bottom row: handle
estimations due to the proximity of polylines and respective deformation results.

We estimate the deformation handle by matching feature lines against the
user-sketch using a scoring function that is a weighted sum of proximity and
shape similarity terms. Although this works nicely in most cases, there are
scenarios that show the limits of this approach with respect to the previously
mentioned ambiguity of over-sketching. Consider Fig. 21: did the user intend
to open the Camel’s mouth by raising its upper lip, or simply want to ex-
trude a new bumpy feature? Did the user intend to bend the longer finger
or elongate the closer, shorter one in Armadillo’s paw? In these cases, we
might satisfy common intuition by using additional matching criteria (e.g.
overshoots, rotation angles, etc.). Fig. 22 however illustrates that there are
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scenarios that lack even any common intuition: we have performed a user
study to find out if humans prefer matching based on proximity or on shape
similarity in these ambiguous case. For the images presented in Fig. 22 we
asked if they preferred matching the green stroke with the close straight seg-
ment or the angle, resulting in the deformations shown next to the illustration
of the match. The surprising result is that our test subjects were undecided:
roughly half preferred the extrusion (matching based on proximity) and the
other half preferred the bending (matching based on shape similarity).

Fig. 22. Ambiguous user input: a user survey showed that one half of the interviewed
users would expect an extrusion based on the proximity of the user-stroke and
the silhouette of the model (top row), where the other half thought of a bending
operation due to the similarity of the given shapes (bottom row). Interestingly,
virtually all users applied their preference to both scenarios, so their decision can
be considered to be independent of the saliency of the silhouettes in these scenarios.

Many experts have commented on our decision assuming that the depth values
are constant while the positions in the image plane change based on the user’s
stroke: depth values should rather be consistent with the model’s features
than moved parallel to the image plane, which is arbitrary and not model-
dependent.

We have experimented with the idea of approximating depth values for the
handle vertices based on a PCA in the set of modified vertices. We assume a
model-oriented deformation should retain the local relative co-variances, i.e.
the ratios of eigenvalues of the co-variance matrix. In other words, features
should rather scale than bend. This is in contrast to what we now call view-
oriented deformation, where coordinates only change in the directions that are
visible to the user, and not in depth. Figure 23 illustrates the two approaches.

We have performed a user study to evaluate which approach leads to defor-
mation results that are perceived as natural given the user sketch. We first
introduced the subjects to the navigation part of the interface and explained

24



Fig. 23. View-oriented deformation vs. model-oriented deformation. Left column:
deformation sketch; Middle column: view-oriented deformation; Right column: mod-
el-oriented deformation.

that the stroke they see leads to a deformation that is consistent in the view
of the stroke. The we presented five different scenarios, each consisting of the
picture of a model with a deformation sketch, as well as two 3D models as
possible deformation results (see Fig. 23): one of these models was based on
view-oriented deformation, the other on model-oriented deformation as de-
scribed above. Without describing or explaining the idea behind the two dif-
ferent variants of the deformation, we asked the subjects to inspect the results
and determine the ones they would expect given the stroke.
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Fig. 24. Distribution of the user acceptance of the view-oriented deformation (left,
mean acceptance = 78 ± 22%), and the model-oriented deformation (right, mean
acceptance = 20± 19%).
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Interestingly, the view-oriented deformation was preferred in 70 of 90 cases,
whereas the model-oriented deformation was chosen only 18 times (no prefer-
ence in 2 cases). For each subject we determine a preference for either one of
the approaches and then consider the accumulated subject results (see Fig. 24):
78 ± 22% prefer the view-oriented deformation . A common statement dur-
ing this user study was that ”I don’t want to change the model in a direction
that I am not aware of ”, which explains the results and also shows that users
intuitively assume a certain strategy for using the tool, namely first rotating
the model so that they only need to change features within the image plane.

The ROI is selected based on proximity between user-sketch and feature line
in image-space. This turned out to be simple and effective, yet it disregards
apparent features of the shape. We believe the results could be improved by
including information such as curvature and other features in image-space into
our region growing approach. Another way of improving on the selection of
the ROI would be to involve the user, perhaps by defining a special stroke
indicating parts that may not move.

Fig. 25. Limitation of the deformation algorithm. Left: user-sketch of a bent leg.
Right: unnatural deformation of the Elephant’s leg.

Looking at the deformation example in Fig. 25 (right), it is clear that LSE is
not a universally applicable deformation tool. However, it should be feasible
to incorporate the information gathered by the handle estimation (such as
rotation and scale of the best handle match) in the deformation step. If –
for instance – the best match corresponds to a considerable rotation of high
similarity and a negligible change in scale (see Fig. 25, left), it might be feasible
to deduce a rotation, whose axis describes a transition region between the
static part of the mesh and the ROI that is to be rotated.

Our implementation of LSE is currently based on common weights for Lapla-
cians, static anchors, and the transformed handle coordinates. Here, it might
be interesting to introduce individual weights for each single constraint. These
might be derived from additional information deduced from the user-sketch -
e.g. stroke timings or even information on pressure of an input device along
the stroke’s path. Moreover, the system is almost generic with regard to the
type of the deformation tool, and it would be very interesting to also try this
approach in other settings.
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Fig. 26. Lack of idempotence. We tried to reconstruct the original shape of a pre-
viously deformed nose (top row), respectively ear (bottom row), by sketching its
original silhouette: the system downsized both entities, but the original shape is not
perfectly recovered (please see text for details).

Although our system is able to downsize model components, it lacks the prop-
erty of idempotence for at least two reasons: even if a user manages to draw
exactly the original silhouette of a previously deformed component, our system
introduces errors by establishing correspondences between image- and object-
space entities (see section 4.3). Secondly, errors introduced by subsequent ap-
plications of the mesh deformation tool [2] are more likely to accumulate than
to neutralize each other (consider Fig. 26). Thus, it is highly recommended to
incorporate an Undo function into any implementation of our system.

Considering the whole system as a pipeline, we describe a series of fairly inde-
pendent components. We believe that individual components might be refined
or replaced using other approaches, however, the system as it is presented here
is a proof-of-concept for automated sketch-based editing of surface meshes on
the basis of image-space silhouettes.
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