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Abstract
Physically based deformable models have been widely embraced by the Computer Graphics community. Many
problems outlined in a previous survey by Gibson and Mirtich [GM97] have been addressed, thereby making
these models interesting and useful for both offline and real-time applications, such as motion pictures and video
games. In this paper, we present the most significant contributions of the past decade, which produce such impres-
sive and perceivably realistic animations and simulations: finite element/difference/volume methods, mass-spring
systems, meshfree methods, coupled particle systems and reduced deformable models based on modal analysis.
For completeness, we also make a connection to the simulation of other continua, such as fluids, gases and melting
objects. Since time integration is inherent to all simulated phenomena, the general notion of time discretization
is treated separately, while specifics are left to the respective models. Finally, we discuss areas of application,
such as elastoplastic deformation and fracture, cloth and hair animation, virtual surgery simulation, interactive
entertainment and fluid/smoke animation, and also suggest areas for future research.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically Based Model-
ing I.3.7 [Computer Graphics]: Animation and Virtual Reality

1. Introduction

Physically based deformable models have two decades of
history in Computer Graphics: since Lasseter’s discussion
of squash and stretch [Las87] and, concurrently, Terzopou-
los et. al’s seminal paper on elastically deformable mod-
els [TPBF87], numerous researchers have partaken in the
quest for the visually and physically plausible animation
of deformable objects and fluids. This inherently interdisci-
plinary field elegantly combines newtonian dynamics, con-
tinuum mechanics, numerical computation, differential ge-
ometry, vector calculus, approximation theory and Com-
puter Graphics (to name a few) into a vast and powerful
toolkit, which is being further explored and extended. The
field is in constant flux and, thus, active and fruitful, with
many visually stunning achievements to account for.

Since Gibson and Mirtich’s survey paper [GM97], the
field of physically based deformable models in Computer
Graphics has expanded tremendously. Significant contribu-
tions were made in many key areas, e.g. object model-

Figure 1: Hooke’s Law, from De Potentia Restitutiva [1678].

ing, fracture, plasticity, cloth animation, stable fluid simu-
lation, time integration strategies, discretization and numer-
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ical solution of PDEs, modal analysis, space-time adaptiv-
ity, multiresolution modeling and real-time simulation. Non-
physical models, such as parametric curves and surfaces
and free-form deformations, are not discussed in this report.
The inclined reader is therefore encouraged to browse more
recent literature on t-splines [SZBN03] [SCF∗04], space-
warping [MJBF02] [LKG∗03] [BK05] and methods based
on differential surface properties [SLCO∗04] [YZX∗04]
[BK04] [LSLCO05] [NSACO05] [IMH05]. For advances in
character skinning see e.g. [WP02] [KJP02] [JT05]. Since
we are not able to cover basic elasticity theory and contin-
uum mechanics in this report, we would like to point out
that a nice review of the history of elasticity theory, start-
ing with the discovery of Hooke’s Law in 1660 (Fig. 1) and
leading up to the general equations of Navier in 1821, is
given in [Lov27]. Furthermore, great introductions to con-
tinuum mechanics and dynamics can be found in [WB97]
and in general textbooks, such as [Chu96] [Coo95] [BW97]
[Gdo93] [BLM00]. For application specific presentations,
we refer the reader to a number of recent works. For cloth
simulation, there is the text by House and Breen [HB00],
as well as the recent, extensive tutorial by Thalmann et
al. [MTCK∗04]. For hair simulation, there is the (already
slightly dated) overview by Thalmann et al. [MTHK00];
the paper by Volino and Thalmann [VMT04] gives a good,
more recent overview. Collision detection and haptic force-
feedback rendering for deformable objects are other chal-
lenging and active areas of research. For a summary of re-
cent work in these fields, we refer the reader to the report by
Teschner et al. [TKH∗05] and the course notes of Lin and
Otaduy [LO05].

In this report we take a model based point of view, moti-
vated by the fact that there are many readily available physi-
cal models for very similar applications, i.e. we can animate
an elastically or plastically deforming solid with many dif-
ferent underlying models, such as mass-spring systems, fi-
nite elements or meshfree methods. We furthermore make a
distinction between Lagrangian methods, where the model
consists of a set of points with varying locations and prop-
erties, and Eulerian methods, where model properties are
computed for a set of stationary points. To give a coarse
overview, we describe recent developments for

• Lagrangian Mesh Based Methods

– Continuum Mechanics Based Methods
– Mass-Spring Systems

• Lagrangian Mesh Free Methods

– Loosely Coupled Particle Systems
– Smoothed Particle Hydrodynamics (SPH)
– Mesh Free Methods for the solution of PDEs

• Reduced Deformation Models and Modal Analysis
• Eulerian and Semi-Lagrangian Methods

– Fluids and Gases
– Melting Objects

In each section we present the basic model formulation,
recent contributions, benefits and drawbacks, and various ar-
eas of application. The section on fluids, gases and melting
objects contains an overview of recent work and establishes
the connection to the field of physically based deformable
models. A complete survey on the animation of fluids and
gases would easily fill its own report and is therefore beyond
our scope.

Our goal is to provide an up-to-date report to the Com-
puter Graphics community, as an entry point for researchers
and developers who are new to the field, thereby comple-
menting the existing survey paper [GM97].

2. Background

2.1. Continuum Elasticity

A deformable object is typically defined by its undeformed
shape (also called equilibrium configuration, rest or initial
shape) and by a set of material parameters that define how it
deforms under applied forces. If we think of the rest shape
as a continuous connected subset M of R

3, then the coor-
dinates m ∈ M of a point in the object are called material
coordinates of that point. In the discrete case M is a discrete
set of points that sample the rest shape of the object.

When forces are applied, the object deforms and a point
originally at location m (i.e. with material coordinates m)
moves to a new location x(m), the spatial or world coordi-
nates of that point. Since new locations are defined for all
material coordinates m, x is a vector field defined on M. Al-
ternatively, the deformation can also be specified by the dis-
placement vector field u(m) = x(m)−m defined on M (see
Fig. 2). From u(m) the elastic strain ε is computed (ε is a di-
mensionless quantity which, in the (linear) 1D case, is sim-
ply ∆l/l). A spatially constant displacement field represents
a translation of the object with no strain. Therefore, it be-
comes clear that strain must be measured in terms of spatial
variations of the displacement field u = u(m) = (u,v,w)T .
Popular choices in Computer Graphics are

εG =
1
2
(∇u+[∇u]T +[∇u]T∇u) (1)

εC =
1
2
(∇u+[∇u]T ), (2)

where the symmetric tensor εG ∈ R
3x3 is Green’s nonlinear

strain tensor and εC ∈ R
3x3 its linearization, Cauchy’s linear

strain tensor. The gradient of the displacement field is a 3 by
3 matrix

∇u =

⎡
⎣ u,x u,y u,z

v,x v,y v,z

w,x w,y w,z

⎤
⎦ , (3)

where the index after the comma represents a spatial deriva-
tive.

The material law (or constitutive law) is used for the com-
putation of the symmetric internal stress tensor σ ∈ R

3x3 for
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each material point m based on the strain ε at that point (σ is
measured as force per unit area, where 1Pascal = 1Pa =
1N/m2). Most Computer Graphics papers use Hooke’s lin-
ear material law

σ = E · ε, (4)

where E is a rank four tensor which relates the coefficients
of the stress tensor linearly to the coefficients of the strain
tensor. For isotropic materials, the coefficients of E only de-
pend on Young’s modulus and Poisson’s ratio.

2.2. Time Integration

In order to simulate dynamic deformable solids, we need to
know the time dependent world coordinates x(m, t) of all
points in M. Given x(m, t), we can subsequently display the
configurations x(0),x(∆t),x(2∆t), .. resulting in an anima-
tion of the object. Here ∆t is a fixed time step of the simula-
tion and x(t) represents the entire vector field at time t.

The unknown vector fields x(t) are not given directly but
implicitly as the solution of a differential equation, namely
Newton’s second law of motion of the form

ẍ = F(ẋ,x, t), (5)

where ẍ and ẋ are the second and first time derivatives of x,
respectively and F() a general function given by the physical
model of the deformable object. In order to find the solution
x(t), this second order differential equation is often rewritten
as a coupled set of two first order equations

ẋ = v (6)

v̇ = F(v,x, t), (7)

where the new quantity v represents ẋ. A discrete set of
values x(0),x(∆t),x(2∆t), .. of the unknown vector field
x which is needed for the animation can now be ob-
tained by numerically solving (i.e. integrating) this sys-
tem of equations. Numerical integration of ordinary dif-
ferential equations is the subject of many textbooks
(e.g. [PTVF92, AP98]). See [HES02] for an excellent
overview in the context of deformable modeling in computer
graphics. We give a few examples here which appear in sub-
sequent sections.

The simplest scheme is explicit (or forward) Euler inte-
gration, where the time derivatives are replaced by finite
differences v̇(t) = [v(t + ∆t)− v(t)]/∆t and ẋ(t) = [x(t +
∆t)− x(t)]/∆t. Substituting these into the above equations
and solving for the quantities at the next time step t + ∆t
yields

x(t +∆t) = x(t)+∆tv(t) (8)

v(t +∆t) = v(t)+∆tF(v(t),x(t), t). (9)

Time integration schemes are evaluated by two main criteria,
their stability and their accuracy. Their accuracy is measured
by their convergence with respect to the time step size ∆t, i.e.

first order O(∆t), second order O(∆t2), etc. In the field of
physically based animation in Computer Graphics, stability
is often much more important than accuracy.

The integration scheme presented above is called explicit
because it provides explicit formulas for the quantities at the
next time step. Explicit methods are easy to implement but
they are only conditionally stable, i.e. stable only if ∆t is
smaller than a stability threshold (see [MHTG05] for an ex-
ample). For stiff objects this threshold can be very small.
The instability is due to the fact that explicit methods ex-
trapolate a constant right hand side blindly into the future as
the above equations show. For a simple spring and a large
∆t, the scheme can overshoot the equilibrium position arbi-
trarily. At the next time step the restoring forces get even
larger resulting in an exponential gain of energy and finally
an explosion. This problem can be solved by using an im-
plicit scheme that uses quantities at the next time step t +∆t
on both sides of the equation

x(t +∆t) = x(t)+∆tv(t +∆t) (10)

v(t +∆t) = v(t)+∆tF(v(t +∆t),x(t +∆t), t). (11)

The scheme is now called implicit because the unknown
quantities are implicitly given as the solution of a system
of equations. Now, instead of extrapolating a constant right
hand side blindly into the future, the right hand side is part of
the solution process. Remarkably, the implicit (or backward)
Euler scheme is stable for arbitrarily large time steps ∆t
(There is, however, a lower time step limit which, for prac-
tical purposes, poses no problem). This gain comes with the
price of having to solve an algebraic system of equations at
each time step (linear if F() is linear, non-linear otherwise).

A simple improvement to the forward Euler scheme is to
swap the order of the equations and use a forward-backward
scheme

v(t +∆t) = v(t)+∆tF(v(t),x(t), t) (12)

x(t +∆t) = x(t)+∆tv(t +∆t). (13)

The update to v uses forward Euler, while the update to x
uses backward Euler. Note that the method is still explicit;
v(t + ∆t) is simply evaluated first. For non-dissipative sys-
tems (i.e. when forces are independent of velocities), this re-
duces to the second order accurate Stoermer-Verlet scheme.
The forward-backward Euler scheme is more stable than
standard forward Euler integration, without any additional
computational overhead.

3. Lagrangian Mesh Based Methods

3.1. The Finite Element Method

The Finite Element Method (FEM) is one of the most popu-
lar methods in Computational Sciences to solve Partial Dif-
ferential Equations (PDE’s) on irregular grids. In order to
use the method for the simulation of deformable objects,
the object is viewed as a continuous connected volume as
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Figure 2: In the Finite Element method, a continuous defor-
mation (a) is approximated by a sum of (linear) basis func-
tions defined inside a set of finite elements (b).

in Section 2.1 which is discretized using an irregular mesh.
Continuum mechanics, then, provides the PDE to be solved.

The PDE governing dynamic elastic materials is given by

ρẍ = ∇·σ+ f, (14)

where ρ is the density of the material and f externally applied
forces such as gravity or collision forces. The divergence op-
erator turns the 3 by 3 stress tensor back into a 3 vector

∇·σ =

⎡
⎣ σxx,x +σxy,y +σxz,z

σyx,x +σyy,y +σyz,z

σzx,x +σzy,y +σzz,z

⎤
⎦ , (15)

representing the internal force resulting from a deformed in-
finitesimal volume. Eq. 14 shows the equation of motion in
differential form in contrast to the integral form which is
used in the Finite Volume method.

The Finite Element Method is used to turn a PDE into a
set of algebraic equations which are then solved numerically.
To this end, the domain M is discretized into a finite number
of disjoint elements (i.e. a mesh). Instead of solving for the
spatially continuous function x(m, t), one only solves for the
discrete set of unknown positions xi(t) of the nodes of the
mesh. First, the function x(m, t) is approximated using the
nodal values by

x̃(m, t) = ∑
i

xi(t)bi(m), (16)

where bi() are fixed nodal basis functions which are 1 at
node i and zero at all other nodes, also known as the Kro-
necker Delta property (see Fig. 2). In the most general case
of the Finite Element Method, the basis functions do not
have this property. In that case, the unknowns are general pa-
rameters which can not be interpreted as nodal values. Sub-
stituting x̃(m, t) into Eq. 14 results in algebraic equations for
the xi(t). In the Galerkin approach [Hun05], finding the un-
knowns xi(t) is viewed as an optimization process. When
substituting x(m, t) by the approximation x̃(m, t), the in-
finitely dimensional search space of possible solutions is re-
duced to a finite dimensional subspace. In general, no func-
tion in that subspace can solve the original PDE. The approx-
imation will generate a deviation or residue when substituted

into the PDE. In the Galerkin method, the approximation
which minimizes the residue is sought. In other words, we
look for an approximation whose residue is perpendicular to
the subspace of functions defined by Eq. 16.

Many papers in Computer Graphics use a simple form
of the Finite Element method for the simulation of de-
formable objects, sometimes called the explicit Finite Ele-
ment Method, which is quite easy to understand and to im-
plement; instead of solving a system of equations for the
positions xi(t), nodal forces are computed locally from ad-
jacent elements [OH99, DDCB01, MDM∗02]. The explicit
Finite Element Method is not to be confused with the stan-
dard Finite Element Method being integrated explicitly. The
explicit Finite Element Method can be integrated either ex-
plicitly or implicitly. In the explicit Finite Element approach,
both, the masses and the internal and external forces are
lumped to the vertices. The nodes in the mesh are treated like
mass points in a mass-spring system while each element acts
like a generalized spring connecting all adjacent mass points.
The forces acting on the nodes of an element due to its defor-
mation are computed as follows (see for instance [OH99]):
given the positions of the vertices of an element and the fixed
basis functions, the continuous deformation field u(m) in-
side the element can be computed using Eq. 16. From u(m),
the strain field ε(m) and stress field σ(m) are computed. The
deformation energy of the element is then given by

E =
Z

V
ε(m) ·σ(m)dm, (17)

where the dot represents the componentwise scalar product
of the two tensors. The forces can then be computed as the
derivatives of the energy with respect to the nodal positions.
In general, the relationship between nodal forces and nodal
positions is nonlinear. When linearized, the relationship for
an element e connecting ne nodes can simply be expressed
as

fe = Ke ue, (18)

where fe ∈ R
3ne contains the ne nodal forces and ue ∈ R

3ne

the ne nodal displacements of an element. The matrix Ke ∈
R

3nex3ne is called the stiffness matrix of the element. Because
elastic forces coming from adjacent elements add up at a
node, a stiffness matrix K ∈ R

3nx3n for an entire mesh with
n nodes can be formed by assembling the element’s stiffness
matrices

K = ∑
e

Ke. (19)

In this sum, the element’s stiffness matrices are expanded to
the dimension of K by filling in zeros at positions related
to nodes not adjacent to the element. Using the linearized
elastic forces, the linear algebraic equation of motion for an
entire mesh becomes (u = x−x0)

Mü+Du̇+Ku = fext , (20)

where M ∈ R
nxn is the mass matrix, D ∈ R

nxn the damping
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matrix and fext ∈ R
n externally applied forces. Often, diago-

nal matrices are used for M and D, a technique called mass
lumping. In this case, M just contains the point masses of
the nodes of the mesh on its diagonal. The vectors x and x0
contain, respectively, the actual and the rest positions of the
nodes.

The Finite Element method only produces a linear sys-
tem of algebraic equations if applied to a linear PDE. If a
linear strain measure is used and Hooke’s law for isotropic
materials is substituted into 14, Lamé’s linear PDE results:

ρẍ = µ∆u+(λ+µ)∇(∇·u), (21)

where the material constants λ and µ can be computed di-
rectly from Young’s modulus and Poisson’s ratio. This equa-
tion is solved in [DDBC99] in a multiresolution fashion.
Using discretized versions of the Laplacian (∆ = ∇2) and
gradient-of-divergence (∇(∇·)) operators, they solve the
Lamé equation on an irregular, multiresolution grid. The
system is optimized for limited deformations (linearized
strain) and does not support topological changes. Based on
Gauss’ Divergence Theorem, the discrete operators are fur-
ther evolved in [DDCB00], which leads to greater accuracy
through defined error bounds. Furthermore, the cubic octree
hierarchy employed in [DDBC99] is succeeded by a non-
nested hierarchy of meshes, in conformance with the rede-
fined operators, which leads to improved shape sampling.
In [DDCB01] the previous linearized physical model is re-
placed by local explicit finite elements and Green’s nonlin-
ear strain tensor. To increase stability the simulation is inte-
grated semi-implicitly in time [DSB99].

O’Brien et al. [OH99] and [OBH02] present a FEM based
technique for simulating brittle and ductile fracture in con-
nection with elastoplastic materials. They use tetrahedral
meshes in connection with linear basis functions bi() and
Green’s strain tensor. The resulting nonlinear equations are
solved explicitly and integrated explicitly. The method pro-
duces realistic and visually convincing results, but it is not
designed for interactive or real-time use. In addition to
the strain tensor, they use the so-called strain rate tensor
(the time derivative of the strain tensor), to compute damp-
ing forces. Other studies on the visual simulation of brit-
tle fracture are [SWB00] and [MMDJ01]. Bro-Nielsen and
Cotin [BNC96] use linearized finite elements for surgery
simulation. They achieve significant speedup by simulat-
ing only the visible surface nodes (condensation), similar to
the BEM (see Section 3.4). Many other studies successfully
apply the FEM to surgery simulation, such as (but surely
not limited to) [GTT89], [CEO∗93], [SBMH94], [KGC∗96],
[CDA99], [CDA00], [PDA00], [PDA01] and [LMS03].

As long as the equation of motion is integrated explic-
itly in time, nonlinear elastic forces resulting from Green’s
strain tensor pose no computational problems. The nonlin-
ear formulas for the forces are simply evaluated and used di-
rectly to integrate velocities and positions as in [OH99]. As

Figure 3: The pitbull with its inflated head (left) shows the
artifact of linear FEM under large rotational deformations.
The correct deformation is shown on the right.

mentioned earlier (Section 2.2), explicit integration schemes
are stable only for small time steps while implicit integra-
tion schemes allow arbitrarily large time steps. However, in
the latter case, a system of algebraic equations needs to be
solved at every time step. Linear PDE’s yield linear alge-
braic systems which can be solved more efficiently and more
stably than nonlinear ones. Unfortunately, linearized elastic
forces are only valid for small deformations. Large rotational
deformations yield highly inaccurate restoring forces (see
Fig. 3).

To eliminate these artifacts, Müller et al. extract the ro-
tational part of the deformation for each finite element and
compute the forces with respect to the non-rotated reference
frame [MG04]. The linear equation 18 for the elastic forces
of an element (in this case a tetrahedron) is replaced by

f = RK(RT x−x0), (22)

where R ∈ R
12x12 is a matrix that contains four 3 by 3 iden-

tical rotation matrices along its diagonal. The vector x con-
tains the actual positions of the four adjacent nodes of the
tetrahedron while x0 contains their rest positions. The rota-
tion of the element used in R is computed by performing a
polar decomposition of the matrix that describes the trans-
formation of the tetrahedron from the configuration x0 to the
configuration x. This yields stable, fast and visually pleas-
ing results. In an earlier approach, they extract the rotational
part not per element but per node [MDM∗02]. In this case,
the global stiffness matrix does not need to be reassembled
at each time step but ghost forces are introduced.

Another solution to this problem is proposed
in [CGC∗02]: each region of the finite element mesh
is associated with the bone of a simple skeleton and then
locally linearized. The regions are blended in each time
step, leading to results which are visually indistinguishable
from the nonlinear solution, yet much faster.

An adaptive nonlinear FEM simulation is described by
Wu et al. [WDGT01]. Distance, surface and volume preser-
vation for triangular and tetrahedral meshes is outlined
in [THMG04]. Grinspun et al. introduce conforming, hierar-
chical, adaptive refinement methods (CHARMS) for general
finite elements [GKS02], refining basis functions instead of
elements. Irving et al. [ITF04] present a method which ro-
bustly handles large deformation and element inversion by
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computing a problem-specific diagonalization of the defor-
mation gradient, from which the forces are derived. Müller et
al. [MTG04] propose simulating and fracturing objects rep-
resented by surface meshes, by embedding the surface in a
cuboid element voxelization (Fig. 4). This domain embed-
ding strategy is also used by James et al. in their squash-
ing cubes simulator [JBT04]. To support topological changes
while maintaining well-shaped elements, Molino et al. cre-
ate duplicates of the original elements in their virtual node
algorithm [MBF04].

Figure 4: Embedding a topologically inconsistent surface
mesh in hexahedral finite elements for deformation simula-
tion and fracturing [MTG04].

3.2. The Method of Finite Differences

If the object M is sampled using a regular spatial grid, the
equation of motion 14 can be discretized using finite differ-
ences. The method of Finite Differences is easier to imple-
ment than the general Finite Element Method. However, it is
difficult to approximate the boundary of an arbitrary object
with a regular mesh. Also, local adaptations are only possi-
ble with irregular meshes.

Pioneering work in the field of physically based anima-
tion was carried out by Terzopoulos and his co-workers. In
their seminal paper [TPBF87] the dynamics of deformable
models are computed from the potential energy stored in the
elastically deformed body. For volumetric objects, they de-
fine the deformation energy as the weighted matrix norm of
the difference between the metric tensors of the deformed
and original shape, integrated over the entire continuum (two
and one dimensional objects involve further weighted norms
of second and third order tensors). The continuous varia-
tional (or directional) derivative of this energy functional
(the elastic force) is discretized using the Method of Fi-
nite Differences (FD), and the simulation is moved forward
through time by semi-implicit integration. This work is fur-
ther evolved in [TF88] and [TW88] where the model is ex-
tended to cover plasticity and fracture.

3.3. The Finite Volume Method

In the explicit Finite Element Method, the forces acting on
the nodes of an element are computed as the derivatives of
the deformation energy with respect to the nodal positions,
where the deformation energy is computed via 17.

There is a more direct way to get to the nodal forces of
an element, using the Method of Finite Volumes. The stress
tensor σ can be used to compute the internal force f per unit
area with respect to a certain plane orientation as

f = σn, (23)

where the normalized vector n is the normal on that plane.
Thus, the total force acting on the face A of a finite element
is given by the surface integral

fA =
Z

A
σdA. (24)

When linear basis functions are used, the stress tensor is
constant within an element. Then, for planar element faces,
the surface integral reduces to the simple product

fA = Aσn, (25)

where the scalar A is the area of the face and n its normal.
To get the nodal forces, one loops over all the faces Ai of the
element and distributes the force fAi evenly among the nodes
adjacent to that face. Teran et al. [TBHF03] use this method
to simulate skeletal muscle. They also use a geometrically
motivated way to compute strain which leads to an intuitive
way of integrating the equations of motion.

3.4. The Boundary Element Method

The Boundary Element Method (BEM) is an interesting al-
ternative to the standard Finite Element approach because all
computations are done on the surface (boundary) of the elas-
tic body instead of on its volume (interior). For a very good
introduction to the subject see [Hun05]. Roughly speaking,
the integral form of the equation of motion is transformed
into a surface integral by applying the Green-Gauss theo-
rem. The method achieves substantial speedup because the
three dimensional problem is reduced to two dimensions.
However, the approach only works for objects whose inte-
rior is composed of a homogenous material. Also, topologi-
cal changes (e.g. fractures) are more difficult to handle than
in the explicit FEM approach where only local changes to
the stiffness matrix or the connectivity of the elements need
to be done.

In the ArtDefo System [JP99] volumetric models are sim-
ulated using the Boundary Element Method and a database
of precomputed reference boundary value problems (RB-
VPs). By employing a fast update process, which exploits
coherence, accurate real-time deformation simulation is
achieved. In [JP02b] the RBVPs are expressed in terms of
linear elastostatic Green’s functions (LEGFMs) and multi-
ple RBVP’s are linked via interface boundary conditions, re-
sulting in a multizone elastokinematic model, which prop-
erly simulates large nonlinear relative strains. The system
is further augmented by multiresolution Green’s functions
(wavelet Green’s functions) in [JP03], with which large-
scale objects can be simulated.
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3.5. Mass-Spring Systems

Mass-spring systems are arguably the simplest and most in-
tuitive of all deformable models. Instead of beginning with a
PDE such as Eq. 14 and subsequently discretizing in space,
we begin directly with a discrete model. As the name im-
plies, these models simply consist of point masses connected
together by a network of massless springs.

The state of the system at a given time t is defined by
the positions xi and velocities vi of the masses i = 1..n. The
force fi on each mass is computed due to its spring connec-
tions with its neighbors, along with external forces such as
gravity, friction, etc. The motion of each particle is then gov-
erned by Newton’s second law fi = miẍi, which for the entire
particle system can be expressed as

Mẍ = f(x,v) (26)

where M is a 3n × 3n diagonal mass matrix. Thus, mass-
spring systems "only" require the solution of a system of
coupled ordinary differential equations (ODEs). This is done
via a numerical integration scheme as described in Sec-
tion 2.2.
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Figure 5: A mass-spring system.

Depicted in Fig. 5 is a simple example of a volumet-
ric mass-spring system (similar to that in [CZKM98]). The
masses are regularly spaced in a lattice. They are connected
together along the twelve edges of each hexahedron by
"structural" springs. Masses on opposite corners of each hex-
ahedron are connected together by "shear" springs. These
springs cause the solid to resist longitudinal and shear defor-
mations respectively, and their rest lengths define the unde-
formed state of the body. Typically, the spring types have dif-
ferent properties; and for anisotropic materials each springs’
properties also depend on its orientation.

Springs are commonly modeled as being linearly elastic;
the force acting on mass i, generated by a spring connecting
i and j together is

fi = ks(|xi j|− li j)
xi j

|xi j| (27)

where xi j is the difference between the two masses’ position
vectors (x j −xi), ks is the spring’s stiffness and li j is its rest
length.

Physical bodies are not perfectly elastic; they dissipate
energy during deformation. To account for this, viscoelastic
springs are used to damp out relative motion. Thus, in addi-
tion to (27), each spring exerts a viscous force. It is common
to model this as

fi = kd(v j −vi) (28)

where kd is the spring’s damping constant. This is unfor-
tunate, as it damps rigid body rotations. Worse still, when
modeling cloth it damps bending and wrinkling — a key fea-
ture of these objects. It is preferable to use

fi = kd(
vT

i jxi j

xT
i jxi j

)xi j (29)

where vi j = v j − vi. This projects the velocity difference
onto the vector separating the masses, and only allows a
force along that direction.

In the literature, the concept of a mass-spring system is
often more general than the canonical example given above.
These models are still represented by point masses and a
fixed connectivity, but the notion of a spring is generalized.
Often the name "particle system" is used instead, which is
perhaps a more fitting name. (Though they should be distin-
guished from the models found in Section 4.1, which have
no fixed connectivity.) In any case, the term "mass-spring
system" is very suggestive, and will most likely persist.

In more general particle systems, such as those found
in [BHW94, BW98, THMG04], deformation energies are
defined. These are often derived from soft constraints that
are to be maintained in the model; given some constraint
of the form C(x) = 0, an associated energy is defined as
ks
2 CT (x)C(x). These energies are minimized at the model’s
rest state, and are used to enforce the preservation of mesh
distances, angles, areas, volumes, etc. Particle forces are
then computed as the derivatives of the energies with respect
to the particle positions

fi = − ∂E
∂xi

. (30)

Each energy term typically involves only a few particles.
In the case of a distance constraint, we are back to our
simple, linear spring model described above. However, for
other constraints and energies, we must imagine more gen-
eral spring types: angular, bending, areal, volumetric, etc.

3.5.1. Early Work

Mass-spring networks first saw use in Computer Graph-
ics for facial modeling [PB81, Wat87]. These early works
solve static problems of the form (18). Soon after, dy-
namic models were introduced to model skin, fat and muscle
[CHP89, TW90, WT91].

The locomotion of simple creatures such as snakes,
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worms and fish [Mil88, TT94] was simulated using mass-
spring systems. In these systems, spring rest-lengths vary
over time to simulate muscle actuation.

In work by Terzopoulos et al. [TPF89] the equations of
thermal conductivity are used to simulate heat transfer in a
volumetric mass-spring system. Each spring’s stiffness is de-
termined by its temperature, which is set to zero once the
melting threshold is exceeded. A discrete fluid model (sim-
ilar to those presented in Section 4.1) is applied to particles
for which all connecting springs have melted.

Breen et al. [BHW94] presented a particle system to
model cloth. They posited that cloth is a mechanism of warp
and weft fibres — not a continuum — and that mass-spring
systems are thus more appropriate than Finite Element tech-
niques for modeling cloth. Using measured data from the
Kawabata Evaluation System [Kaw80], they took care in for-
mulating their energy functions for stretching, bending and
trellising (shearing), and predicted the static drape of real
materials quite accurately. Since [BHW94], particle sys-
tems have dominated the cloth simulation literature — al-
though new FEM formulations (such as the one described
in [EKS03]) continue to be proposed.

3.5.2. Drawbacks and Improvements

Particle systems tend to be intuitive and simple to imple-
ment. Moreover, they are computationally efficient and han-
dle large deformations with ease. However, unlike the Finite
Element and finite difference methods, which are built upon
elasticity theory, mass-spring systems are not necessarily ac-
curate. Primarily, most such systems are not convergent; that
is, as the mesh is refined, the simulation does not converge
on the true solution. Instead, the behavior of the model is
dependent on the mesh resolution and topology. In practice,
spring constants ks are often chosen arbitrarily, and one can
say little quantitatively about the material being modeled. In
addition, there is often coupling between the various spring
types. For instance, the "shear" springs of the model in Fig. 5
also resist stretching. For medical applications, as well as for
virtual garment simulation in the textile industry, greater ac-
curacy is required. For applications such as film and games,
this lack of accuracy may be acceptable; convincing anima-
tions have been produced using these systems. However, a
judicious choice of model is still advised, as the behavior of
the material being modeled can be highly mesh dependent.

Several researchers have explored and have tried to
mitigate the accuracy issues in mass-spring systems.
Kass [Kas95] presents a simple equivalence in one di-
mension between a mass-spring system and a correspond-
ing finite difference spatial discretization. Eischen and
Bigliani [HB00] perform a comparison between a Finite El-
ement model and a carefully tuned particle system, which
gave similar experimental results for small deformations. Et-
zmuss et al. [EGS03] carefully derive a cloth particle system
from a continuous formulation by a finite difference dis-

Figure 6: Cloth carefully modeled using a mass-spring sys-
tem. Image courtesy of Robert Bridson, UBC.

cretization. Their model is convergent, and they show how
to choose spring constants based on continuous material pa-
rameters.

These more accurate particle systems, however, only ap-
ply to rectangular meshes. Like finite difference techniques,
they do not generalize easily to triangular (or tetrahedral)
meshes. Volino and Thalmann [VMT97] present a triangu-
lar mesh which attempts to model the physical properties of
cloth regardless of edge orientations. However, the accuracy
of their method is unclear. Baraff and Witkin [BW98] model
cloth using a triangular mesh, deriving in-plane particle
forces from a continuum formulation. Their approach sup-
ports anisotropic behavior, but is not convergent. In [BC00],
the authors present a novel mass-spring system which gives
consistent results (though it is not convergent) for tetrahedral
and hexahedral meshes, independent of the orientation of the
elements. In their system, springs emanate from the barycen-
ter of each element along principle coordinate axes and are
attached to element faces; forces acting on each particle are
then computed via interpolation. Their approach also allows
the user to control anisotropic material behavior. Teschner
et al. [THMG04] model volumes and surfaces using tetrahe-
dral and triangular meshes respectively. They employ gener-
alized springs which preserve distances, areas and volumes.
Their model is efficient, convergent (though it does not in-
corporate continuous material properties), and supports plas-
tic deformation.

Bending models for surfaces tend to be particularly ad-
hoc; Bridson et al. [BMF03] present a physically correct
bending model for triangle meshes by isolating the bending
mode from all other modes of deformation (Fig. 7). Grinspun
et al. present a similar bending model for the simulation of
discrete shells [GHDS03].

An interesting approach is to use learning algorithms to
search for mesh parameters. (See [BTH∗03, BSSH04] and
references therein.) Bhat et al. use simulated annealing to
estimate the spring constants in a cloth mesh. They employ
Baraff and Witkin’s model [BW98], and use video of real
cloth as their reference for comparison. Bianchi et al. use
a genetic algorithm to identify spring constants as well as
mesh topology in a volumetric mass-spring system. They
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Figure 7: A bending model for triangle meshes with nonzero
rest angles [BMF03]. The model on the right has signifi-
cantly stronger bending resistance, giving it a "water bottle"
effect. Image courtesy of Robert Bridson, UBC.

compare their results to FEM reference solutions, and obtain
close correspondence. While such methods are general, they
are computationally expensive and require reference solu-
tions; moreover, the results of a specific search may not hold
for different mesh resolutions.

Adaptive meshing techniques are particularly complicated
by the non-convergent behavior of many mass-spring sys-
tems, as they require modeling at multiple resolutions. (An-
other difficulty is the handling of so called T-junctions be-
tween regions of differing resolutions, though this problem
must also be addressed in FEM and other methods.) A num-
ber of authors have addressed this issue for cloth simula-
tion. In these systems, splitting/merging criterion are of-
ten based on bending angles between triangles. Villard and
Borouchaki [VB02] apply adaptive refinement to a simple,
convergent model based on quadrilateral meshes. They show
consistent results between meshes of multiple resolutions,
maintaining rich detail at reduced computation times. Ear-
lier work by Hutchinson et al. [HPH96] takes a similar ap-
proach, though the convergence of their model is not clear as
they couple their spatial and time discretizations together in
an ad-hoc manner. Li and Volkov [LV05] present an adaptive
framework for triangular cloth meshes, avoiding the prob-
lematic T-junctions. They present attractive results, though
their physical model is not convergent.

Finally, a number of researchers have sought to improve
the realism of particle systems by modeling nonlinear mate-
rial properties. For instance, Eberhardt et al. [EWS96] base
their spring model on measured cloth data to model hystere-
sis effects; Choi and Ko [CK02] approximate cloth’s buck-
ling response using a fifth order polynomial.

3.5.3. Time Integration

Once a force model is chosen, the particle system is stepped
forward in time via a numerical integration scheme as in Sec-
tion 2.2. Time integration schemes have received particular
attention in the cloth simulation literature (see [HES02]).
As cloth is often modeled by mass-spring systems, we fur-
ther discuss the subject of time integration here.

Cloth is a highly anisotropic material due to its structure:
it resists bending weakly, but has a relatively strong resis-
tance to stretching. When simulating a highly stiff volume

of material, one can employ a reduced deformation model,
such as modal analysis (see Section 5) — and in the limit,
use a rigid body model. Clearly, this cannot be done with
cloth. We are interested in visualizing the large scale, out-
of-plane folding and wrinkling of cloth, however we must
still deal with these planar energies in our model. Numeri-
cally speaking, the resulting ODE system (26) is stiff ; that
is, it possesses a wide range of eigenvalues. This forces us
to take excessively small time steps when using an explicit
scheme.

Provot [Pro95] tackles the issue of stiffness by using
much weaker stretching energies and then post-processing
the cloth mesh at each time step, iteratively enforcing con-
straints. Springs that are stretched by more than 10% are re-
laxed (shortened). This in turn stretches nearby neighboring
springs which are then relaxed, and so on until convergence
is obtained. This, in effect, also models the biphasic nature
of cloth — small deformations are resisted weakly until a
threshold is reached, whereupon stiffness dramatically in-
creases. In practice, this method gives efficient, attractive re-
sults, though convergence is not guaranteed.

Baraff and Witkin [BW98] present a linear implicit
scheme which allows for large time steps while maintain-
ing stability. This has proven to be a robust and efficient so-
lution to the stiffness problem, and has become a popular
technique. Specifically, they apply a backward Euler scheme
to Eq. 26, giving[

∆x
∆v

]
= ∆t

[
vn +∆v

M−1f(xn +∆x,vn +∆v)

]
(31)

where xn = x(t) and vn = v(t). This is a nonlinear equation
in ∆x and ∆v. A linear implicit version of (31) is obtained by
using a first order Taylor series expansion of f

f(xn +∆x,vn +∆v) = fn +
∂f
∂x

∆x+
∂f
∂v

∆v (32)

where ∂f
∂x and ∂f

∂v are the Jacobian matrices of the particle
forces with respect to position and velocity respectively. In
their paper, Baraff and Witkin derive expressions for the Ja-
cobians of the various internal forces in their model. Due to
the local connectivity structure of the mesh, these are sparse
matrices. They then solve the resulting linear system at each
time step

A∆v = b, (33)

where

A ≡ (I −∆tM−1 ∂f
∂v

−∆t2M−1 ∂f
∂x

) (34)

and b ≡ ∆tM−1(fn +∆t
∂f
∂x

vn). (35)

They solve this system, in the presence of constraints, us-
ing a modified preconditioned conjugate gradient solver
(MPCG, an interesting technique in its own right — see
[BW98, AB03]). This is equivalent to applying one Newton
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Figure 8: Decomposing cloth into parts which can be solved
more efficiently [BA04].

iteration to Eq. 31. Although solving this system increases
the computational cost at each time step, this is more than
offset by the ability to take large steps when desired. How-
ever, as illustrated by Desbrun et al. [DSB99], the larger the
time step size, the more artificial damping is added to the
system.

Others have since attempted to improve upon Baraff and
Witkin’s approach. Desbrun et al. [DSB99] precompute the
linear part of A, achieving an O(n), unconditionally stable
scheme. Their technique, however, is inaccurate and does
not generalize well to large systems. Kang et al. [KCC∗00]
improve upon this approximation, but ultimately are only re-
placing the CG iterations of [BW98] with a single, Jacobi-
like iteration. Volino and Magnenat-Thalmann [VMT00] use
a weighted implicit-midpoint method that appeared to give
attractive results, but which is less stable and may be diffi-
cult to tune in practice. Choi and Ko [CK02] use the more
accurate second-order backward difference formula (BDF2);
moreover, their coupled compression/bending model im-
proves the stability of the system, eliminating the need for
fictitious spring damping.

Instead of applying an implicit scheme to the entire
system, a number of researchers have employed implicit-
explicit (IMEX) schemes [ARW95]. The essential idea is to
separately treat the stiff and non-stiff parts of the ODE, han-
dling the stiff parts with an implicit method and the non-stiff
parts with an explicit method. This combines the stability
of an implicit scheme where needed with the simplicity and
efficiency of an explicit scheme where possible. Hauth et
al. [HES02] base their IMEX splitting on connection type:
stretch springs are handled implicitly, whereas shear and
bend "springs" are handled explicitly. This simplifies imple-
mentation and improves the sparsity of A — and thus the
cost of solving Eq. 33. The authors also use BDF2, and em-
bed their linear solver within a Newton solver, making theirs
a fully (as opposed to linear) implicit technique. Boxerman
and Ascher [BA04] take a similar approach, optimizing their
IMEX splitting adaptively based on a local stability crite-
rion. Each spring is handled either explicitly or implicitly,
based on time step, local mesh resolution and material prop-
erties. They then take further advantage of the improved sys-
tem sparsity to decompose the mesh into components which
can be solved more efficiently (Fig. 8).

Bridson et al. [BMF03] apply a similar IMEX split-
ting to cloth as that used for advection-diffusion equa-
tions [ARW95], applying an implicit method to the damp-
ing term and an explicit method to the elastic term. This is
appropriate when damping plays a significant role, as damp-
ing imposes quadratic time step restrictions with respect to
mesh size (as opposed to a linear one for elastic terms).
They incorporate this within a second order accurate inte-
gration scheme, and include a strain limiting step. Coupled
with their careful handling of bending and collisions, they
produced visually stunning cloth animations.

4. Lagrangian Mesh Free Methods

4.1. Loosely Coupled Particle Systems

Particle systems were developed by Reeves [Ree83] for ex-
plosion and subsequent expanding fire simulation in the
movie "Star Trek II: The Wrath of Khan". The same tech-
nique can also be used for modeling other fuzzy objects
such as clouds and water, i.e. objects that do not have a
well-defined surface. Particles are usually graphical prim-
itives such as points or spheres, however, they might also
represent complex group dynamics such as a herd of ani-
mals [Rey87]. Each particle stores a set of attributes, e.g. po-
sition, velocity, temperature, shape, age and lifetime. These
attributes define the dynamical behavior of the particles over
time and are subject to change due to procedural stochastic
processes. Particles pass through three different phases dur-
ing their lifetime: generation, dynamics and death.

In [Ree83], particles are points in 3D space which rep-
resent the volume of an object. A stochastic process gen-
erates particles in a predetermined generation shape which
defines a region about its origin into which the new parti-
cles are randomly placed. Attribute values are either fixed or
may be determined stochastically. Initially, particles move
outward away from the origin with a random speed. Dur-
ing the dynamics phase, particle attributes might change as
functions of both time and attributes of other particles. Po-
sition is updated by simply adding the velocity. Finally, a
particle dies if its lifetime reaches zero or if it does not con-
tribute to the animation anymore, e.g. if it is outside of a
region of interest. A particle is rendered as a point light
source which adds an amount of light depending on its color
and transparency attribute. Motion blurring is very easy to
achieve by rendering a particle as a streak using its posi-
tion and velocity. An advantage of particles is their simplic-
ity, which enables the animation of a huge number of par-
ticles for complex scenes. The procedural definition of the
model and its stochastic control simplifies the human de-
sign of the system. Furthermore, with particle hierarchies,
complicated fuzzy objects such as clouds can be assem-
bled and controlled. Although the particles are simulated
omitting inter-particle forces, the resulting animations are
convincing and fast for inelastic phenomena. Therefore, the
technique has been widely employed in movies and video
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games. Examples of modeling waterfalls, ship wakes, break-
ing waves and splashes using particle systems can be found
in [FR86, Pea86, Gos90, Sim90, OH95].

Particles which interact with each other depending on
their spatial relationship are referred to as spatially coupled
particle systems [Ton92]. The interactions between parti-
cles evolve dynamically over time, thus, complex geome-
try and topological changes can be easily modeled using
this approach. Tonnesen presented a framework for physi-
cally based animation of solids and liquids based on dynam-
ically coupled particles which represent the volume of an
object [Ton91, Ton98]. Each particle pi has a potential en-
ergy φi which is the sum of the pairwise potential energies
φi j between pi and all other other particles p j, i.e.

φi = ∑
j �=i

φi j. (36)

The force fi exerted on pi with position xi is then

fi = −∇xi φi = −∑
j �=i

∇xi φi j. (37)

So far, all particles interact with each other, resulting in
O(n2) complexity where n is the number of particles. The
computational costs for computing the force can be reduced
to O(n) when restricting the interaction to a neighborhood
within a certain distance, and O(n logn) for neighbor search-
ing. To avoid discontinuities at the neighborhood bound-
ary, the potentials are weighted with a continuous, smooth
and monotonically decreasing weighting function which de-
pends on the distance to the particles and ranges from one at
the particle position to zero at the neighborhood boundary.

For deriving inter-particle forces, the Lennard-Jones po-
tential φLJ is used:

φLJ(d) =
B
dn − A

dm , (38)

where d is the distance between two particles, and n, m, B
and A are constants. The Lennard-Jones potential is well
known in molecular dynamics for modeling the interaction
potential between pairs of atoms. It creates long-range at-
tractive and short-range repulsive forces, yielding particles
arranged into hexagonally ordered 2D layers in absence of
external forces. A more convenient formulation, called the
Lennard-Jones bi-reciprocal function, is written as

φ(d) =
−eo

m−n
(m(

d0

d
)n −n(

d0

d
)m), (39)

where d0 is the equilibrium separation distance, and −e0 is
the minimal potential (the magnitude is called the dissoci-
ation energy). Increasing the dissociation energy increases
the stiffness of the model, while with the exponents n and
m the width of the potential well can be varied. Therefore,
large dissociation energy and high exponents yield rigid and
brittle material, while low dissociation energy and small ex-
ponents result in soft and elastic behavior of the object. This
allows the modeling of a wide variety of physical properties

ranging from stiff to fluid-like behavior. By coupling the dis-
sociation energy with thermal energy such that the total sys-
tem energy is conserved, objects can be melted and frozen.
Furthermore, thermal expansion and contraction can be sim-
ulated by adapting the equilibrium separation distance d0 to
the temperature.

One problem of particle systems is that the surface is
not explicitly defined. Blinn [Bli82] proposed using an al-
gorithm which was developed to model electron density
maps of molecular structures. A Gaussian potential ϕi(x) =
be−ad2

(which is often called a blob) is assigned to each
particle, where a and b are constants and d = ‖x − xi‖ is
the distance from an arbitrary point x in space to the parti-
cle’s position xi. A continuously defined potential field ϕ(x)
in space is obtained by summing the contribution from each
particle

ϕ(x) = ∑
i

ϕi(x). (40)

The surface is then defined as an iso-value S of ϕ. This yields
an implicit coating of the particle which handles topological
changes such as splitting and merging by construction. For
a more intuitive control of the surface, the constants a and b
can be computed as a = −B/R2 and b = Se−B, where R is
the radius in isolation and B the blobiness.

The implicit coating of particles for soft inelastic
substances undergoing topological changes pose chal-
lenging problems such as volume preservation, avoid-
ing unwanted blending and contact modeling. These were
addressed by Desbrun and Cani in a series of pa-
pers [Can93, DC94, DC95]. A hybrid model is used which
is composed of two layers: Particles are used to simulate
soft inelastic substances as described above, while an elas-
tic implicit layer defines the surface of an object and is lo-
cally deformed during collisions. A problem of the implicit
coating is that the volume may change significantly during
deformation, especially for splitting and merging. However,
efficiently computing the volume of a soft substance is not
trivial. A territory of a particle pi is defined as the (volu-
metric) part Vi of the object where the field contribution of
pi is the highest. Note that territories form a partition of the
implicit volume of an object. Each particle samples its ter-
ritory boundary by sending a fixed number of points called
seeds in a set of distributed directions until they reach the
boundary. The volume of a particle is approximated by sim-
ply summing up the distances from the particle to the seeds.
The local volume variation can then be easily approximated
for each particle, and the field function is changed accord-
ingly such that the volume is preserved. Another problem
is that split object parts might blend with each other when
they come close. To avoid this, an influence graph is built at
each animation step by recursively adding the neighbors of
a particle which are in its sphere of influence to the same
influence connected component. Only the particles of the
same component can interact and their field functions are
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blended. However, the problem arises that two or more sep-
arated components might collide. For detecting a collision,
the seed points on the iso-surface S are tested against the
field function of another component. For resolving interpen-
etrations between two components with potential functions
ϕ1 and ϕ2, exact contact surfaces are computed by apply-
ing negative compressing potentials g2,1 and g1,2 such that
ϕ1 + g2,1 = ϕ2 + g1,2 = S, resulting in a local compres-
sion. To compensate the compression and ensure C1 con-
tinuity of the deformed surfaces, positive dilating poten-
tials are applied in areas defined around the interpenetration
zone [Can93, OC97]. For collision response, the compres-
sion potentials gi, j are computed for each colliding seed and
then transmitted as response force to the corresponding par-
ticle. Additionally, the two components might be merged lo-
cally where the collision force exceeds a threshold.

Szeliski and Tonnesen introduced oriented particles for
deformable surface modeling [ST92, Ton98], where each
particle represents a small surface element (called surfel).
Each surfel has a local coordinate frame, given by the po-
sition of the particle, a normal vector and a local tangent
plane to the surface. To arrange the particles into surface-
like arrangements, interaction potentials are defined which
favor locally planar or locally spherical arrangements. The
Lennard-Jones potential described above is used to control
the average inter-particle spacing. The weighted sum of all
potentials yields the energy of a particle, where the weights
control the bending and stiffness of the surface. Variation
of the particle energy with respect to its position and ori-
entation yields forces acting on the positions and torques
acting on the orientations, respectively. Using these forces
and torques, the Newtonian equations for linear and angular
motion are solved using explicit integration as described in
Section 2.2.

Recently, Bell et al. presented a method for simulating
granular materials, such as sand and grains, using a parti-
cle system [BYM05]. A (non-spherical) grain is composed
of several round particles, which move together as a single
rigid body. Therefore, stick-slip behavior naturally occurs.
Molecular dynamics (MD) is used to compute contact forces
for overlapping particles. The same contact model is used for
collision of granular materials with rigid bodies, or even be-
tween rigid-bodies, by simply sampling the rigid body sur-
face with particles.

4.2. Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian
technique where discrete, smoothed particles are used to
compute approximate values of needed physical quantities
and their spatial derivatives. Forces can be easily derived di-
rectly from the state equations. Furthermore, as a particle-
based Lagrangian approach it has the advantage that mass
is trivially conserved and convection is dispensable. This re-
duces both the programming and computational complexity

Figure 9: Simulating interface tension forces between flu-
ids of different polarity, temperature diffusion and buoy-
ancy [MSKG05].

and is therefore suitable for interactive applications. A draw-
back of SPH is that it is not possible so far to exactly main-
tain the incompressibility of material.

Following, we will give a short introduction of the SPH
method and discuss applications in Computer Graphics. For
a more detailed introduction we refer the reader to the excel-
lent paper of Monaghan [Mon92].

A function A is interpolated at a position x from its neigh-
boring particles using a summation interpolant:

A(x) = ∑
j

m j
A j

ρ j
W (r,h), (41)

where A j denotes the function value of a particle p j at x j
(the interpolation point), m j and ρ j are the mass and den-
sity of a particle p j, respectively, and r = x− xj. W (r,h) is
a smoothing kernel with the properties

R
W (r,h)dr = 1 and

limh→0 W (x,h) = δ(x), where h is the support radius and δ
the Dirac-function. For efficiency reasons, h is usually cho-
sen such that the kernel W (r,h) has compact support. The
choice of the smoothing kernel W (r,h) is very important.
Often spline Gaussian kernels are used, see e.g. [Mon92] for
a discussion of kernels. If W (r,h) is differentiable, a differ-
entiable interpolant of a function can be derived by simply
computing the gradient of W (r,h), i.e.,

∇A(x) = ∑
j

m j
A j

ρ j
∇W (r,h). (42)

Therefore, there is no need for finite differences or a grid. To
obtain higher accuracy the interpolant can be computed as

ρ∇A(x) = ∇(ρA(x))−A(x)∇ρ. (43)

The density is estimated at an arbitrary point as

ρ(x) = ∑
j

m jW (r,h). (44)

The particle densities could be computed for each time step.
In practice, this is often not appropriate because the den-
sity drops close to the object boundary. Furthermore, diffi-
culties arise when adapting the spatial resolution of the parti-
cles [DC99]. Instead, we can assign an initial density to each
particle. The continuity equation (conservation of mass) is
then used for computing the variation of density over time

ρ̇i = −ρi∇vi, (45)
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Figure 10: An elastic solid is dropped onto a heated box and melts to a fluid [KAG∗05].

where the divergence of velocity ∇vi is approximated by

∇vi =
1
ρi

∑
j �=i

m j(v j −vi) ·∇W (r,h). (46)

The disadvantage of this update of the density relative to the
motion of the neighboring particles is that exact mass con-
servation is not guaranteed.

The equations of motion are solved by deriving forces.
E.g. the pressure force can be estimated using Eq. 43

fpressure
i = −mi ∑

j
m j(

Pi

ρ2
i

+
Pj

ρ2
j

)∇W (r,h), (47)

where the force is symmetrized to fulfill the action-reaction
principle of Newton’s third law. For keeping a constant rest
density ρ0, the pressure Pi is computed by a variation of the
ideal gas state equation [DC96]

Pi = k(ρ−ρ0), (48)

where k is a gas constant.

For smoothed particles, local stability criteria have been
found which, in conjunction with time-adaptive integration,
yield both stable and efficient animations. The Courant-
Friedrichs-Lewy (CFL) criterion requires that each particle
i must not be passed by, giving a limit for the time step
∆t ≤ λh/c, where λ is the Courant number and c is the speed
of sound of the material, which is the maximum velocity of a
deformation wave inside the material. Pressure waves prop-
agate at speed c =

√
∂P/∂ρ, therefore using Eq. 48 induces

c =
√

k. Considering viscosity further decreases the maxi-
mum time step, see [Mon92] and [DC96] for details.

Generally, the animation quality and accuracy increases
with a higher number of particles. In [DC99], an adaptive
framework is proposed where space and time resolutions are
chosen automatically. Individual particles are refined where
pressure differences are above a user-defined threshold. A
refined particle pi with mass mi and volume mi/ρ0 is re-
placed by n particles with smaller volume and mass mi/n
such that they occupy the same volume as pi. Consider-
ing the particles as spheres with radius proportional to their
support radius, an individual support radius hi can be com-
puted as hi = ξ 3

√
mi/ρ0, where the constant ξ is chosen ac-

cording to the desired average number of neighboring par-
ticles. Neighboring particles can be merged in stable areas
where pressure is almost uniform. However, since a particle
is isotropic, the neighboring particles should approximately

fill a sphere. The new particle is positioned at the center of
gravity of the replaced ones. Its mass and velocity are com-
puted such that mass and linear momentum are conserved.

Considering the object as a set of smeared-out masses, the
surface can be defined as an iso-surface of the mass density
function [DC96]. This yields an implicit representation co-
herent with the physical model. Desbrun and Cani [DC98]
improve this implicit coating of particles by using an active
surface which evolves depending on a velocity field, simi-
lar to snakes [KWT88]. Therefore, surface tension and other
characteristics such as constant volume can be added to the
surface model.

4.2.1. Applications

SPH was introduced independently by Gingold and Mon-
aghan [GM77] and Lucy [Luc77], for the simulation of as-
trophysical problems such as fission of stars. Stam and Fi-
ume introduced SPH to the Computer Graphics commu-
nity to depict fire and other gaseous phenomena [SF95].
They solve the advection-diffusion equation for densities
composed of "warped blobs". Desbrun and Cani solve the
state equations for the animation of highly deformable bod-
ies using SPH [DC96]. They achieve the animation of in-
elastic bodies with a wide range of stiffness and viscosity.
Lava flows are animated by coupling viscosity with a tem-
perature field and simulated heat transfer between the par-
ticles [SAC∗99]. By considering hair as a fluid-like con-
tinuum, Hadap and Magnenat-Thalmann [HMT01] used a
modified formulation of SPH to simulate hair-hair inter-
actions. Premože et al. introduced the use of the moving
particle semi-implicit method (MPS) for simulating incom-
pressible multiphase fluids [PTB∗03]. Impressive visual re-
sults were produced by coupling the physical particles with
level sets for surface reconstruction. Müller et al. presented
a method based on SPH and new smoothing kernels, with
which fluids with free surfaces can be simulated at inter-
active rates with up to 5000 particles [MCG03]. Further-
more, they proposed a term to model surface tension effects.
In [MST∗04], the interaction of Lagrangian fluids and mesh-
based deformable solids are modeled by placing virtual
boundary particles, so-called ghost particles [Mon94], on the
surface of the solid objects according to Gaussian quadra-
ture. Recently, the SPH method was extended in [MSKG05]
so that the simulation of phenomena such as boiling water,
trapped air and the dynamics of a lava lamp are possible
(Fig. 9). Liquids with different polarities are simulated by

c© The Eurographics Association and Blackwell Publishing 2006.



Nealen, Müller, Keiser, Boxerman and Carlson / Physically Based Deformable Models in Computer Graphics

Figure 11: Highly plastic deformations and ductile fracture [PKA∗05].

computing a body force which acts perpendicular to the in-
terface of two liquids. The force is proportional to the curva-
ture of the interface and the interface tension. Additionally,
air particles are generated and deleted dynamically where air
pockets are likely to be formed, making it possible to simu-
late trapped air.

4.3. Mesh Free Methods

Interesting and fairly new approaches to deformable mod-
eling are the so-called meshfree methods for the solution
of partial differential equations, which originated in the
FEM community approximately a decade ago ([NTVR92],
[Suk03]). For an extensive and up-to-date classification and
overview of mesh-free methods, see [FM03], [Liu02] and
also the excellent review paper [BKO∗96]. A nice introduc-
tion to the element-free Galerkin method is given in [Ask97].

4.3.1. Point-based Animations

Recently, the combination of mesh-free physics with point-
sampled surfaces [PZvBG00] in so-called point-based ani-
mations [pba04] have become popular. Müller et al. intro-
duced to the graphics community a mesh-free continuum-
mechanics-based framework for the animation of elastic,
plastic and melting objects [MKN∗04]. Elastic body forces
are derived via the strain energy density

U =
1
2
(ε ·σ), (49)

where ε is the strain and σ the stress tensor as described in
Section 3.1. The elastic force per unit volume at a particle
pi with material coordinates mi is computed using the direc-
tional derivative ∇ui . For a Hookean material, i.e. σ = E · ε
(see Eq. 4), this yields

fi = −∇uiU = −1
2
∇ui(εi ·E · εi) = −σ ·∇ui εi, (50)

where Green’s nonlinear strain tensor (see Eq. 1) is used
for εi. For computing εi, the spatial derivatives of the dis-
placement field ∇ui at mi is needed. To guarantee zero elas-
tic forces for rigid body modes, the approximation of ∇ui
from the displacement vectors u j of the neighboring par-
ticles must be at least first order accurate. Therefore, the
Moving Least Squares method [LS81] with a linear basis
is used which yields first order accurate interpolation of
point-sampled functions (contrary to the SPH approxima-
tion described in Section 4.2 which is not even zeroth-order

accurate). For the following, we will only consider the x-
component u of the displacement field u = (u,v,w)T . The
basic idea is to approximate a continuous scalar field u(m)
using a Taylor approximation. For particles p j close to a par-
ticle pi we get a first order approximation ũ j of the values u j
as

ũ j = ui +∇u|mi ·mi j, (51)

where mi j = m j − mi and ∇u|mi = (u,x,u,y,u,z)T at mi.
The index after the coma denotes a spatial derivative. The
weighted least-squares error ei of the approximation ũ j is
given by

ei = ∑
j

(ũ j −u j)
2wi j, (52)

where wi j is a normalized, continuously defined and mono-
tonically decreasing weighting function. We want to find the
unknowns u,x, u,y and u,z such that the error e is minimized.
Therefore, we set the derivatives of e with respect to u,x, u,y

and u,z to zero, yielding three equations for the three un-
knowns(

∑
j

mi jm
T
i jwi j

)
∇u|mi = ∑

j
(u j −ui)mi jwi j. (53)

Finally, we obtain the spatial derivatives of u(m) at mi as

∇u|mi = A−1

(
∑

j
(u j −ui)mi jwi j

)
, (54)

where the inverse of A = ∑ j mi jm
T
i jwi j needs to be computed

only once per particle and can be used for computing the
derivatives of v and w as well.

With this approach, material properties ranging from stiff
elastic to highly plastic can be simulated. In [KAG∗05], the
authors describe how to extend this range to viscous materi-
als such as fluids by merging the solid mechanics equation
with the Navier-Stokes equations. Viscosity, pressure and
surface tension forces are computed using SPH as described
in Section 4.2 and added to the elastic force. Note that this
allows the simulation of non-realistic materials such as elas-
tic fluids, similar to [GBO04]. The material properties such
as stiffness, viscosity, plasticity and cohesion can be defined
per particle. By coupling these properties to the temperature
of a particle, local melting and freezing of objects can be
achieved (Fig. 10).

In the case of elastic materials which do not undergo
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any topological changes, the surface can be simply dragged
along with the particles [MKN∗04]. This is done by com-
puting the displacement for each surface element (surfel)
from the displacements of neighboring particles p j. The first
order approximation of ∇u at m j can be used to obtain a
smooth displacement vector field which is invariant under
linear transformations:

x(msi) = msi +∑
j

ω(msi ,m j)(u j +∇u|m j (m j −msi)),

(55)
where msi and x(msi) are the material and world coordinates
of a surfel si, respectively, and ω is a normalized weighting
kernel. The deformation is computed and applied to both the
center and the axes of a surfel. To adapt the sampling of the
surface in case of stretching or compression, surfels can be
split or merged similar to [PKKG03]. The animation of the
physics particles combined with this surface skin allows the
simulation of elastic and plastic materials of detailed models
in real-time. Furthermore, Adams et al. [AKP∗05] showed
that the surface can be efficiently raytraced by exploiting the
deformation field for bounding hierarchy updates.

However, dragging the surface along with the particles
fails if topological changes occur. In this case, an implicit
representation can be used as discussed in the Section 4.2.
In [MKN∗04], this implicit representation is sampled with
surfels. After an animation step the new position of the
surfels is estimated using the displacement computation in
Eq. 55. The deformed surfels are then projected onto the im-
plicit surface. Finally, a resampling and relaxation scheme
ensures that the surface is completely covered and uniformly
sampled with surfels. In [KAG∗05], the implicit represen-
tation is improved by applying energy potentials and geo-
metric constraints which give better control over the surface.
However, as the particle representation of the volume is usu-
ally much coarser than the surface representation, the im-
plicit coating of the particles cannot represent fine detail of
the surface. A possible solution is to use the explicit defor-
mation approach of Eq. 55 for solids (with low temperature),
the implicit representation for fluids (with high temperature),
and blend between the explicit and the implicit representa-
tion depending on the temperature for melting object parts.
This way, surface detail smoothly fades out and the melting
surface approaches the implicit representation. Freezing flu-
ids are handled analogously.

The framework is extended in [PKA∗05] to cope with
fracturing (Fig. 11). Cracks are created at surfels where the
main principal stress exceeds a threshold. The crack propa-
gates in a plane perpendicular to the main principal stress,
where the crack surface is dynamically sampled with sur-
fels. Visibility tests detect neighboring particles, which are
separated by a crack surface. A splitting, merging and ter-
mination operator handles the topological events which oc-
cur when cracks merge or branch. Furthermore, a resam-
pling scheme adapts the particles resolution to handle small
fractured object pieces. With the suggested methods a wide

range of materials can be fractured, from stiff elastic to
highly plastic objects that exhibit brittle and/or ductile frac-
ture.

Collision detection of point-based models has been dis-
cussed for rigid [KZ04], quasi-rigid [PPG04] and de-
formable objects [KMH∗04]. For rigid collision detection,
a bounding sphere hierarchy is built with the surfels as
leaves, which is suitable for time-critical collision detec-
tion [KZ04]. Pauly et. al [PPG04] compute a consistent con-
tact surface and the traction distribution by solving a Linear
Complementarity Problem (LCP). Collision response forces
are computed from the local tractions and integration yields
the total wrench that acts on the quasi-rigid bodies. Keiser et
al. propose to decouple the collision handling and deforma-
tion to achieve stable and efficient contact handling for de-
formable objects [KMH∗04]. Collisions are detected using
a high resolution surface sampled with surfels and a simple
scheme is used to compute a consistent contact surface. A
penalty force depending on its displacement onto the con-
tact surface is computed for each surfel. These forces are
then distributed to the neighboring particles where they are
applied as external collision response forces in the next ani-
mation step.

Wicke et al. propose a method for animating point-
sampled thin shells [WSG05]. The geometric surface prop-
erties are approximated using splines (so-called fibres) em-
bedded in the surface. Physical effects such as plasticity and
fracturing can be easily modeled. The authors also describe
a skinning technique for point-sampled surfaces, with which
a high-resolution surface can be animated using a sparse set
of samples.

4.3.2. Meshless Deformations Based on Shape Matching

Müller et al. [MHTG05] propose a meshless method for an-
imating deformable objects which does not fit into any of
the preceding categories. The nodes of a volumetric mesh
are treated as point masses and animated as a simple par-
ticle system without connectivity. Then, at every time step,
the original configuration of the points (the rest state mesh)
is fitted to the actual point cloud in the least squares sense,
using shape matching techniques for point clouds with cor-
respondence. The fitted rest shape yields goal positions for
all point masses. Each point mass is then pulled towards its
goal position while the displacement divided by the time step
is added to the velocity of the point. This geometric integra-
tion scheme, although explicit, is shown to be uncondition-
ally stable (Fig. 12).

Figure 12: Stability and the ability to recover from highly
deformed or inverted configurations, shown in [MHTG05].
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5. Reduced Deformation Models and Modal Analysis

5.1. Basic Formulation

As described by James and Pai [JP04], given N unde-
formed point locations p = [p1, . . . ,pN ], a reduced deforma-
tion model approximates deformed point locations p′ by a
linear superposition of M displacement fields (the columns
Ui of U in Eq. 56). The amplitude of each displacement field
is given by the reduced coordinates q such that

p′ = p+Uq, (56)

as shown in Fig. 13. In [JP04] it is stated that the columns
of U could arise from any possibly nonlinear black box pro-
cess, such as an interpolation process, multiresolution mod-
eling or nonlinear/linear modal analysis. The latter will be
the focus of this section.

(a) (b) (c) (d)

Figure 13: Reduced deformation models: (a) reference
shape p, (b) displacement field U1, (c) displacement field U2,
and (d) one possible deformed shape p′ = p+U1 +0.5U2.

5.2. Linear Modal Analysis

Pentland and Williams [PW89] pioneered the use of reduced
deformable models in Computer Graphics, using modal
analysis. Given the mass, damping and stiffness matrices M,
C and K, Eq. 20 can be decoupled into N = 3n linearly inde-
pendent ordinary differential equations (ODEs) by solving
the generalized eigenvalue problem

MΦΛ = KΦ, (57)

such that ΦT MΦ = I and ΦT KΦ = Λ are diagonal matrices.
The entries of Λ contain the eigenvalues, and the columns
of Φ = [Φ1Φ2 . . .ΦN ] contain the eigenvectors of M−1K.
Φ is often termed the modal matrix or modal displacement
matrix, where the i-th column Φi represents the i-th mode
shape, and the i-th entry of Λ is proportional to the reso-
nant frequency of the Φi. The columns of Φ form a basis
(the modal basis, or eigenbasis) of 3n dimensional space, so
any displacement u(t) = x(t)−x0 can be written as a linear
combination of the columns

u(t) = Φq(t). (58)

The vector q(t) contains the modal coordinates (or modal
amplitudes). Substituting Eq. 58 into Eq. 20 and premulti-
plying by ΦT yields

ΦT MΦ q̈+ΦT CΦ q̇+ΦT KΦ q = ΦT fext . (59)

Note that for general damping, ΦT CΦ is dense, but if we as-
sume proportional (Raleigh) damping C = αM + βK, then
ΦT CΦ = αI+βΛ is also diagonal (taking into consideration

that M, C and K are normally symmetric positive definite).
With g = ΦT fext we can now express Eq. 59 as 3n indepen-
dent scalar 2nd order differential equations

q̈i +(α+βλi)q̇i +λiqi = gi, (60)

where λi is the i-th diagonal element of Λ.

With this decoupling, one can examine the eigenvalues,
discard high frequency mode shapes, and thereby only use
dominant modes (i.e. dominant columns Φi). This can sig-
nificantly reduce computational cost. Furthermore, the mo-
tion components qi of the individual modes can now be com-
puted independently and combined by linear superposition.

In detail, each of these equations (60) has an analytical
solution of the form

qi = c1er1t + c2er2t , (61)

where the constants c1 and c2 depend on the initial condi-
tions (qi and q̇i at a time t = t0), and the roots of the charac-
teristic equation r2 +(α+βλi)r +λi = 0 are

r1,2 =
−(α+βλi)±

√
(α+βλi)2 −4λi

2
. (62)

The solution depends on the sign of R = (α + βλi)2 − 4λi:
R > 0, R = 0 and R < 0 produces the overdamped (r1,r2 real
and different), critically damped (r1,r2 real but repeated) and
underdamped case (r1,r2 are complex conjugates) respec-
tively. If r1,r2 are real then c1,c2 are also real, if r1,r2 are
complex conjugate pairs then so will be c1,c2. In any case,
qi in Eq. 61 will be a real value.

time

u

Figure 14: Underdamped (solid, blue) and critically
damped (dashed, red) vibration. The black (dash-point) line
is the plot of ±e−(α+βλi)t/2.

Most interest is given to the underdamped case, where
damped oscillations occur, and for which Eq. 61 can be writ-
ten as

qi = e−(α+βλi)t/2(c1 cos µt + c2 sin µt), (63)

µ =

√
4λi − (α+βλi)2

2
, (64)

see Fig. 14. This can be used to compute the response of a
mode to an external force at some time t = t0 (see [HSO03]):
first, the generalized force fext must be transformed to modal
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Figure 15: The first four dominant low frequency mode
shapes Φ1, . . . ,Φ4 of a constrained bar. The distortion in-
herent to linear modal analysis is most evident in the bottom
right figure [BJ05].

coordinates by ∆tg = ∆tΦT fext , and then c1,c2 can be com-
puted by substituting Eq. 63 into Eq. 60 and setting qi = 0
and q̇i = ∆tg [HSO03]. Naturally, the system of decoupled
ODEs (Eq. 60) can also be numerically integrated through
time.

5.3. Applications and Other Reduced Models

Interestingly, modal analysis was introduced to Computer
Graphics in 1989, but only relatively few significant con-
tributions have been presented since then. The first work of
note is Stam’s application of modal analysis to the simula-
tion of tree branches subjected to turbulence [Sta97].

James and Pai [JP02a] map runtime dynamics to graphics
hardware: in a precomputation stage they build a so-called
dynamic response texture (DyRT), where mode shapes Φi
and other quantities are stored (see Fig. 15). At runtime, the
modal coordinates q are computed from rigid bone trans-
forms or external excitations. Finally, displacements are ap-
plied to the undeformed mesh by computing u = ∑i Φiqi for
a few dominant low frequency modes using a vertex program
running on graphics hardware.

Whereas enforcing direct manipulation and collision con-
straints is relatively straightforward with node positions in
Euclidean space, applying these in a modal basis can be
somewhat unintuitive. Hauser et al. [HSO03] provide a solu-
tion, where generalized forces are computed for constrained
nodes using the modal basis. Since the force computation in-
volves evaluating a pseudoinverse using the singular value
decomposition (SVD), only few constraints (up to ten in
their examples) can be applied in a real-time simulation en-
vironment. Furthermore, they couple the deformable model
with a rigid body reference frame and simulate dynamics,
collisions and friction.

In the above methods, a linear Cauchy strain model is

Figure 16: Evolution of one mode shape in linear modal
analysis (top row) and modal warping (bottom row). Image
courtesy of Min Gyu Choi, Kwangwoon University.

employed to obtain the stiffness matrix K, resulting in well
known artifacts for large rotational deformations away from
the rest shape (see Section 3.1 and Fig. 15). To suppress
these artifacts, Choi and Ko [CK05] identify per-node rota-
tions and extend the basic modal analysis formulation (Sec-
tion 5.2) to accommodate these rotations, similar in spirit to
the warped stiffness approach [MDM∗02]. Although their
modal warping procedure is not guaranteed to perform well
for large deformations, their results show visually convinc-
ing improvements over the standard linear model (Fig.16).
The decoupled ODEs are solved using semi-implicit numer-
ical integration, instead of applying the analytical solution
of Eq. 61.

Barbič and James [BJ05] take a different approach: in-
stead of employing Cauchy’s linearized strain (Eq. 2) they
use full quadratic Green strain (Eq. 1) throughout the entire
computation, thereby necessitating the solution of a nonlin-
ear version of Eq. 20 per time step. The otherwise compu-
tationally burdening implicit Newmark integration is greatly
accelerated by carrying it out in reduced coordinates (also
known as subspace integration), and thereafter performing
the matrix multiplication of Eq. 56 in the fragment shader
of current graphics hardware. For the generation of an ap-
propriate reduced deformation basis U, which contains suf-
ficient nonlinear deformation, they provide a fully automatic
method based on modal derivatives (Fig. 17), and also show
how user-defined (force) sketches can assist a full unreduced
offline static solver in precomputing a suitable U. Note that
due to the nonlinear coupling of modes, using independent
harmonic oscillators as previously described (Eq. 61) does
not suffice.

Figure 17: Using subspaces based on the first few dominant
vibration modes and their derivatives is sufficient to describe
large nonlinear deformations [BJ05].
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Figure 18: A silver block catapulting some wooden blocks into an oncoming wall of water [CMT04].

A somewhat different model reduction strategy is devised
by James and Fatahalian [JF03]: they entirely precompute
collision, contact and dynamics (as well as co-parameterized
global illumination) of deformable objects by limiting the
range of interactions to a finite set of user impulses. The dy-
namic responses, termed impulse response functions (IRFs),
each a chronological set of generalized deformation vectors,
are dimensionality reduced using principal component anal-
ysis (PCA). At runtime, IRFs are blended based on user in-
teraction.

6. Eulerian and Semi-Lagrangian Methods

There are two general points of view we can take when
describing an object that we wish to physically simulate.
The main distinctions of the two view points is how they
discretize an object in order to work with it numerically,
and how they define the boundary of the object itself. So
far, this report has covered the Lagrangian point of view.
As Section 2 explains, the Lagrangian point of view de-
scribes an object as a set of moving points (material coor-
dinates) that travel around and change position over time;
these points carry their material properties with them as they
move through the world. Lagrangian techniques are a conve-
nient way to define an object as a connected mesh of points
(Section 3) or simply a cloud of points (Section 4). The Eule-
rian point of view, on the other hand, looks at a stationary set
of points and calculates how the material properties stored
at those stationary grid points change over time. One of the
drawbacks of changing to an Eulerian perspective is that the
boundary of the object is no longer explicitly defined. This
section covers Eulerian techniques as they are used in Com-
puter Graphics, and focuses heavily on fluids because flu-
ids are often defined in an Eulerian framework. This section
will also explore how object boundaries are represented in
the Eulerian framework. This section is not meant to give
an exhaustive reference for Eulerian techniques; it is meant
to give the reader an idea of what types of deformable and
fuzzy objects have been simulated in an Eulerian framework.

The Eulerian approach to fluids was popularized by a se-
ries of papers by Foster and Metaxas [FM96], [FM97b], and
[FM97a]. Their formulation solves the fluid (Navier-Stokes)
equations on a regular voxel grid and uses a finite differ-

ence formulation for all the differential equations. To un-
derstand the Eulerian framework, and how it differs from
a Lagrangian one, we will look briefly at how the Navier-
Stokes equations (equations of motion for a fluid) are for-
mulated and solved for a single time step. We refer the
reader to [Car04] for an in-depth discussion of liquids, and
to [Sta03] for a practical implementation of a smoke simula-
tor.

There are two parts to the Navier-Stokes equations:

∇·u = 0 (65)

ut = −(u ·∇)u+∇· (ν∇u)−∇p+ f. (66)

These two equations represent the conservation of mass and
momentum for an incompressible fluid. The vector field ut is
the time derivative of the fluid velocity. The scalar pressure
field is p†, and ν is the kinematic viscosity. The vector field f
represents the body force per unit mass (usually just gravity).
In this Eulerian formulation the quantities of the fluid are
stored in a grid of cells (a regular grid of cubes or voxels
if you like). The velocity is stored on the cell faces and the
pressure is stored at the center of the cells. This is commonly
called a staggered (or MAC) grid. Notice that the position,
x, of the fluid is not defined; in this Eulerian frame work, the
grid positions remain fixed.

Solving equations 65 and 66 is usually done in several
steps (breaking up a PDE into simpler pieces and solving the
pieces separately is known as operator splitting). The f term
is simply scaled by the time step and added to the current
velocity. The advection term, −(u ·∇)u, is then solved. One
popular way to solve the advection term is with the semi-
Lagrangian technique [Sta99] because it is stable for large
time step sizes. The semi-Lagrangian technique continues as
follows–to solve for the advection of any quantity through a
velocity field (in this case we are solving for the advection of
the velocity field through itself), the velocity at the grid point
we wish to update is found, and a path is traced from the grid
point backwards in time with that velocity to a new location.

† In this formulation we assume a constant density and absorb it
into the pressure term for simplicity.
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The quantity that we desire to update is then interpolated
from the new location and that interpolated value is used as
the updated quantity. It is interesting to note that if the time
step is scaled so that the path traverses only a single cell, then
the semi-Lagrangian technique is a first order upwind tech-
nique. After advection, the viscosity term is solved. If the
viscosity is expected to be large then an implicit technique
should be used (see Section 2.2). At this point we have what
can be called a best guess velocity:

ũ = u+∆t[−(u ·∇)u+∇· (ν∇u)+ f], (67)

which does not take into account pressure or mass conser-
vation (Eq. 65). The final step, commonly called a pressure-
projection, is in fact one of the reasons that Eulerian tech-
niques are popular for fluids. The trick of the pressure-
projection step is to solve for a pressure such that subtracting
that pressure’s gradient from the best guess velocity will give
a final velocity that conserves mass. So, we know two things:
first, the final velocity, unew, must contain the pressure term
which is missing from Eq. 67, so we add it back in to get

unew = ũ−∆t∇p. (68)

Second, we know the final velocity has to conserve mass, so
we plug Eq. 68 into Eq. 65 to get

∇·unew = ∇· ũ−∆t∇· (∇p) = 0. (69)

Rearranging Eq. 69 gives us the following Poisson equation

∆t∇2 p = ∇· ũ (70)

with which we must solve for p. We then plug p back into
Eq. 68 to complete the pressure projection and find our fi-
nal velocity. The final velocity is incompressible (divergence
free), and for a constant density fluid this ensures mass con-
servation. Compressible fluids can also conserve mass, but
their density must change to do so (see [YOH00]).

The system of equations formed by Eq. 70 is symmetric
and positive definite (as long as there is at least one known
Dirichlet boundary condition), and can be solved with a con-
jugate gradient method. Although the above explanation as-
sumes a regular grid, it can also be carried out on an adap-
tively refined grid, such as an octree [SY02, LGF04].

In the rest of this section we will explore the numerous
types of deformable objects that are modeled within an Eu-
lerian framework. As the techniques are described we will
also describe how the standard Navier-Stokes equations are
changed in each case, and how the objects are represented.

In the early work of Foster and Metaxas [FM96] liquid
is displayed either as a height field or a collection of mass-
less particles. These massless particles are different from the
material coordinate particles used in a Lagrangian simula-
tion because they are passively moved in the velocity field
defined by the fluid, and the particles’ velocity is interpo-
lated from the grid. Foster and Metaxas render liquid par-
ticles as smoothed ellipsoids [FM97a] with an orientation

Figure 19: Melting bunny [CMVT02].

based on the velocity of the particle and a normal computed
from the position of the other nearby particles. Foster and
Metaxas also define smoke as massless particles [FM97b]:
they advect and diffuse an added temperature field on the
grid, and use that temperature to define thermal buoyancy in
the smoke to create turbulent motion.

Stam [Sta99] uses a scalar density field to define quanti-
ties of smoke. These smoke densities are diffused on the grid
and advected with the semi-Lagrangian technique (which
Stam did not know about at the time, so when he pub-
lished his seminal work he called the semi-Lagrangian tech-
nique the method of characteristics). Stam also adds buoy-
ancy forces based on the local smoke density, and Fed-
kiw et al. [FSJ01] add a vorticity confinement term to arti-
ficially increase small scale swirling motion which is lost
when using semi-Lagrangian advection on coarse grids.
Kim et al. [KLLR05] used the semi-Lagrangian technique
with back and fourth error compensation and correction to
keep both small and large scale swirling motion in the fluid
while maintaining stability. Their technique greatly reduces
the dissipation present in the semi-Lagrangian technique,
while maintaining its stability.

Carlson et al. [CMVT02] add a temperature and variable
viscosity field to model solid objects that can melt into liq-
uid (Fig. 19). In their model, a solid object is simply a fluid
with very high viscosity, and as the temperature rises the
viscosity decreases, and the object melts into a liquid state.
Like [FM96], the object in their simulation is defined by a set
of massless particles, but instead of just rendering the parti-
cles they use a splatting technique to extract a mesh from
the particles for rendering. Their method also animates the
building of a sand castle, but only high viscosity is used to
model the mud.

More recently, Zhu and Bridson [ZB05] model sand as a
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Figure 20: Bunny made of sand [ZB05]. Image courtesy of
Robert Bridson, UBC.

continuum (fluid) on an Eulerian grid (Fig. 20). They use a
Lagrangian technique to move particles, then interpolate the
velocity from the nearby particles on to the Eulerian grid.
They then use the grid velocity to solve the pressure pro-
jection step. Thus, their technique combines the strengths of
both the Lagrangian and Eulerian techniques. After solving
the Navier-Stokes equations, they add in a model for sand.
At each grid cell they identify the strain rate (Eq. 2) and use
it to calculate stress forces in that cell. All connected groups
of cells which can resist the inertia trying to make them slide
have their velocity projected to rigid body motion. The ve-
locity in all other cells get forces created by sliding frictional
stress added to them. Their method also describes a way to
build an implicit function from the particles for rendering.

Carlson et al. [CMT04] project rigid bodies on an Eule-
rian grid to model their interaction with a fluid (Fig. 18).
A rigid body solver is run in tandem with a fluid solver: at
each frame, the rigid bodies that are in contact with fluid are
projected onto the fluid, where their equations of motion are
solved with a Navier-Stokes equation that is modified with
buoyancy and collision forces. After solving the fluid equa-
tion they project the velocity in the rigid body cells to rigid
body motion (effectively setting the strain rate to zero inside
the cells that contain rigid bodies) and use that velocity for
the next step of the rigid body solver.

Foster and Fedkiw [FF01] were the first in graphics to
model the boundary of a fluid as a level set. A level set, in
this context, is an extra scalar field, φ, that stores the signed
distance to the fluid surface at each grid point. The change
of φ is computed each step with the level set equation,

φt +u ·∇φ = 0, (71)

which effectively updates the position of the iso-contour that
delineates the fluid’s surface. The level set method has be-
come one of the most popular ways to define a fluid’s sur-
face. It has the drawback of defining the surface only at Eu-
lerian grid points, and thus rounding off high resolution de-
tails, but this drawback can be reduced by using the particle
level set technique [EMF02], which patches the level set val-
ues with a group of particles that is passively advected with
the surface. The level set can be directly ray traced with a
root finder, or a mesh can be extracted from it with march-
ing cubes. We would like to take note of a common confu-

sion when discussing level sets and fluids. Level sets are not
used to solve the fluid equations; they are used to define the
boundary of the fluid (often called surface tracking), so that
we know where to solve the fluid equations.

Another way to define a fluid surface is with an explicit
polygonal mesh. A mesh representation not only allows a
direct way to render the surface, but can also keep track of
surface properties like texture coordinates. It can be difficult
to deal with topology changes, warping, and self intersection
in a mesh if a single mesh is used. The contouring method
described by Bargteil et al. [BGOS05] defeats these difficul-
ties by re-defining a mesh each frame of the fluid simulation.
They also maintain a signed distance field and show volume
conservation on par with the particle level set method with
octree refinement.

Figure 21: A dripping viscoelastic fluid [GBO04].

Goktekin et al. [GBO04] animate viscoelastic substances
(that display characteristics of both a liquid and a solid) by
adding elastic terms to the basic Navier-Stokes equations
(Fig. 21). The elastic terms are controlled by von Mises’s
yield condition and a quasi-linear plasticity model. They
keep track of a strain tensor field that is advected throughout
the fluid grid, and its components are stored at edge centers
(off-diagonal components) and cell centers (diagonal com-
ponents). The surface of their fluid is defined with a particle
level set.

Feldman et al. [FOK05] use an Eulerian grid based tech-
nique to model smoke, but they use an unstructured mesh,
tetrahedra instead of cubes, near the boundary of compli-
cated objects. Their hybrid mesh formulation allows them to
model the boundary with curved or highly detailed objects
in a more accurate fashion. In their paper they render smoke
as a set of massless particles.

7. Conclusion

Physically based deformable models have seen wide appli-
cation in many fields of Computer Graphics, and research
and development efforts are as active and fruitful as ever.
As pointed out throughout this paper, no one model is suited
best for any given application. Instead, many parameters and
considerations need to be taken into account, such as model
representations, the range of physical parameters, topolog-
ical changes, realtime or interactive simulation, and so on.
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And even though such a seemingly exhaustive toolkit exists,
with which very impressive results have been achieved, we
still have quite a way to go until we can plausibly and in-
teractively simulate the natural phenomena in our everyday
lives. To quote Richard Feynman [FLS63]

"The things with which we concern ourselves in
science appear in myriad forms, and with a mul-
titude of attributes. For example, if we stand on
the shore and look at the sea, we see the water,
the waves breaking, the foam, the sloshing motion
of the water, the sound, the air, the winds and the
clouds, the sun and the blue sky, and light; there
is sand and there are rocks of various hardness
and permanence, color and texture. There are an-
imals and seaweed, hunger and disease, and the
observer on the beach; there may be even happi-
ness and thought. Any other spot in nature has a
similar variety of things and influences. It is al-
ways as complicated as that, no matter where it
is. Curiosity demands that we ask questions, that
we try to put things together and try to understand
this multitude of aspects as perhaps resulting from
the action of a relatively small number of elemen-
tal things and forces acting in an infinite variety of
combinations."

With the current methodology, the algorithms and models
have seen somewhat limited application in production
environments and video games. One reason for this is
the lack of computational power: many of the presented
techniques are inherently offline, and can take hours or days
to produce results. In the field of interactive entertainment,
small physically based deformable models are already
being implemented, and thanks to developments such as the
upcoming physics processing unit (PPU), this trend is likely
to carry on. A second reason we see for a reluctancy to adopt
these new methods is the limited control the users have over
the resulting animations. Although this has been previously
addressed, we see great potential in coupling more intuitive
user interfaces with physically based simulations.

Acknowledgements

We would like to thank the following people for their
contributions, suggestions and general help in shaping and
improving this paper: Bart Adams, Adam Bargteil, Robert
Bridson, Min Gyu Choi, Nico Galoppo and Doug James.

References
[AB03] ASCHER U., BOXERMAN E.: On the modified conjugate gradient method

in cloth simulation. The Visual Computer (2003).

[AKP∗05] ADAMS B., KEISER R., PAULY M., GUIBAS L. J., GROSS M., DUTRÉ P.:
Efficient raytracing of deforming point-sampled surfaces. In Proceedings
of Eurographics 2005 (2005), pp. 677–684.

[AP98] ASCHER U., PETZOLD L.: Computer Methods for Ordinary Differential
Equations and Differential-Algebraic Equations. Society for Industrial &
Applied Mathematics, 1998.

[ARW95] ASCHER U., RUUTH S., WETTON B.: Implicit-explicit methods for time-
dependent pde’s. SIAM J. Numer. Anal., 32 (1995), 797–823.

[Ask97] ASKES H.: Everything you always wanted to know about the Element-Free
Galerkin method, and more. Tech. rep., TU Delft nr. 03.21.1.31.29, 1997.

[BA04] BOXERMAN E., ASCHER U.: Decomposing cloth. In SCA ’04: Proceed-
ings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation (2004), pp. 153–161.

[BC00] BOURGUIGNON D., CANI M.-P.: Controlling anisotropy in mass-spring
systems. In Computer Animation and Simulation ’00 (2000), pp. 113–123.

[BGOS05] BARGTEIL A. W., GOKTEKIN T. G., O’BRIEN J. F., STRAIN J. A.: A
semi-lagrangian contouring method for fluid simulation. ACM Transactions
on Graphics (in press) (2005).

[BHW94] BREEN D., HOUSE D., WOZNY M.: Predicting the drape of woven cloth
using interacting particles. In SIGGRAPH ’94 (1994), pp. 365–372.
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