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Abstract

We present a method for modeling and animating a wide spectrum of volumetric objects, with material proper-
ties anywhere in the range from stiff elastic to highly plastic. Both the volume and the surface representation
are point based, which allows arbitrarily large deviations form the original shape. In contrast to previous point
based elasticity in computer graphics, our physical model is derived from continuum mechanics, which allows the
specification of common material properties such as Young’s Modulus and Poisson’s Ratio.
In each step, we compute the spatial derivatives of the discrete displacement field using a Moving Least Squares
(MLS) procedure. From these derivatives we obtain strains, stresses and elastic forces at each simulated point. We
demonstrate how to solve the equations of motion based on these forces, with both explicit and implicit integration
schemes. In addition, we propose techniques for modeling and animating a point-sampled surface that dynamically
adapts to deformations of the underlying volumetric model.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically Based Model-
ing I.3.7 [Computer Graphics]: Animation and Virtual Reality

1. Introduction

A majority of previous simulation methods in computer
graphics use 2D and 3D meshes. Most of these approaches
are based on mass-spring systems, or the more mathemat-
ically motivated Finite Element (FEM), Finite Difference
(FD) or Finite Volume (FVM) Methods, in conjunction with
elasticity theory. In mesh based approaches, complex phys-
ical effects, such as melting, solidifying, splitting or fusion,
pose great challenges in terms of restructuring. Additionally,
under large deformations the original meshes may become
arbitrarily ill-conditioned. For the simulation of these com-
plex physical phenomena, efficient and consistent surface
and volume representations are needed, which allow sim-
ple restructuring. Our goal is, therefore, to unify the simu-
lation of materials ranging from stiff elastic to highly plastic
into one framework, using a mesh free, point-based volume
and surface representation, which omits explicit connectivity
information and, thus, implicitly encompasses the complex
physical effects described above.

In the field of mesh based methods, the trend went from
mass-spring systems to approaches based on continuum me-

chanics: tuning a mass-spring network to get a certain behav-
ior is a difficult task, whereas continuum mechanics parame-
ters can be looked up in text books. The two main mesh free
methods that have been employed in computer graphics are
particle systems based on Lennard-Jones interaction forces
and Smoothed Particle Hydrodynamics (SPH) methods. The
former is borrowed from Molecular Dynamics while the lat-
ter was designed for the simulation of astrophysical pro-
cesses. Both methods require parameter tuning as in the case
of mass-spring systems. Following the trend in mesh based
methods, we propose to take the same steps for mesh free
methods and derive forces from elasticity theory.

1.1. Our Contributions

The main contributions of our work to the field of computer
graphics are:

a mesh free, continuum mechanics based model for the
animation of elastic, plastic and melting objects, and
a dynamically adapting, point-sampled surface for
physically based animation.
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Figure 1: Left two images: to compute realistic deformations, we represent both the physical volume elements (phyxels) and
the surface elements (surfels) as point samples. Right four images: With our system we can model and animate elastic, plastic,
melting and solidifying objects.

Using MLS for the interpolation of point sampled func-
tions is a well known approach in mesh free methods. We
introduce it to the computer animation community. How-
ever, on top of the MLS based computation of the gradient
of the displacement vector field (the tensor field ∇u), we
derive elastic forces in accordance with a linear displace-
ment, constant strain, Finite Element approach. To the best
of our knowledge, this combination and the resulting equa-
tions are new. In contrast to most standard mesh free ap-
proaches, which require solving complex integrals numeri-
cally, our method yields simple explicit equations which are
easy to code and result in fast simulations.

We can handle high resolution geometry, but also revert
to simpler, lower resolution surface modeling and rendering
techniques. By introducing this trade-off, our simulation is
suitable for both real-time interaction as well as high quality
off-line rendering.

1.2. Related Work

An excellent, but somewhat dated survey of deformable
modeling is given in [GM97]. In this section we provide an
overview of existing work which we found to be most rele-
vant and also related to our own system. A complete survey
is beyond the scope of this paper.

1.2.1. Mesh Based Physical Models

Pioneering work in the field of physically-based animation
was carried out by Terzopoulos and his co-workers. In their
seminal paper [TPBF87] the dynamics of deformable mod-
els are computed from the potential energy stored in the
elastically deformed body using finite difference (FD) dis-
cretization. This work is extended in [TF88, TW88], where
the model is extended to cover plasticity and fracture. A
hybrid mesh/particle method for heating and melting de-
formable models is given in [TPF89].

A large number of mesh based methods for both off-
line and interactive simulation of deformable objects have
been proposed in the field of computer graphics. Ex-
amples are mass-spring systems used for cloth simu-
lation [BW98, DSB99], the Boundary Element Method

(BEM) [JP99] and the Finite Element Method (FEM),
which has been employed for the simulation of elastic ob-
jects [DDCB01, GKS02], plastic deformation [OBH02] and
fracture [OH99].

1.2.2. Mesh Free Physical Models

Our approach to deformable modeling is greatly inspired
by so-called mesh free or meshless methods for the so-
lution of partial differential equations, which, according
to [Suk03], originated in the FEM community approxi-
mately a decade ago [NTVR92]. An introduction to the
element-free Galerkin method is given in [Ask97]. For a
more extensive and up-to-date classification and overview
of mesh free methods, see [FM03, Liu02, BKO∗96].

Desbrun and Cani were among the first to use mesh free
models in computer graphics. In [DC95], soft, inelastic sub-
stances that can split and merge are animated by combin-
ing particle systems with simple inter-particle forces and
implicit surfaces for collision detection and rendering. The
Smoothed Particle Hydrodynamics (SPH) method [Mon92]
is applied in [DC96]: discrete particles are used to com-
pute approximate values of physical quantities and their spa-
tial derivatives. Space-adaptivity is added in [DC99]. In the
work of Tonnesen on particle volumes [Ton98], elastic inter-
particle forces are computed using the Lennard-Jones poten-
tial energy function (commonly used to model the interac-
tion potential between pairs of atoms in molecular dynam-
ics).

1.2.3. Point Based Surface Modeling

Our high quality surface representation is based on point
samples and draws heavily from existing research. [ST92]
and [WH94] proposed the use of point primitives in the con-
text of 3D shape modeling. We apply their idea of sample
splitting and merging to dynamically adapt the surface sam-
pling density during simulation. To maintain a close connec-
tion between physical particles and surface samples, we use
a space warping approach, similar to the free-form shape de-
formation scheme proposed in [PKKG03]. Our method also

c© The Eurographics Association 2004.



M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross and M. Alexa / Point Based Animation of Elastic, Plastic and Melting Objects

bears some resemblance to projection-based surface mod-
els such as [ABCO∗03] that implicitly define a continuous
surface from an unstructured point cloud. We use a linear
version of the Moving Least Squares projection for dynamic
surface reconstruction, similar to [AA03].

1.3. Overview

We first give a brief overview of elasticity theory, required to
explain our method (Section 2). We then describe our simu-
lation loop in detail in Section 3. An extension of the algo-
rithm to the simulation of plastic and highly deformable sub-
stances is developed in Section 4. Section 5 shows two meth-
ods for animating the detailed surface along with the physi-
cal model. Results are presented in Section 6, after which we
conclude with a brief discussion and areas for future work.

2. Elasticity Model

2.1. Continuum Equations

The continuum elasticity equations describe how to compute
the elastic stresses inside a volumetric object, based on a
given deformation field [Coo95, Chu96]. Consider a model
of a 3-dimensional body whose material coordinates are x =
(x,y,z)T . To describe the deformed body, a continuous dis-
placement vector field u = (u,v,w)T is used where the scalar
displacements u = u(x,y,z),v = v(x,y,z),w = w(x,y,z) are
functions of the material coordinates. The coordinates of a
point originally located at x are x+u in the deformed model.
The Jacobian of this mapping is given by

J = I+∇uT =

u,x +1 u,y u,z

v,x v,y +1 v,z

w,x w,y w,z +1

 , (1)

with the following column and row vectors

J =
[
Jx,Jy,Jz

]
=

JT
u

JT
v

JT
w

 . (2)

The subscripts with commas represent partial derivatives.
To measure strain, we use the quadratic Green-Saint-Venant
strain tensor

ε = JT J− I =∇u+∇uT +∇u∇uT . (3)

We assume a Hookean material, meaning that the stress σ
linearly depends on the strain ε:

σ = C ε, (4)

where C is a rank four tensor, approximating the constitu-
tive law of the material, and both ε and σ are symmetric
3× 3 (rank two) tensors. For an isotropic material, C has
only two independent coefficients, namely Young’s Modu-
lus E and Poission’s Ratio ν. By modifying C, we can easily
incorporate more sophisticated (i.e. anisotropic) constitutive

laws into our system. We compute the elastic body forces via
the strain energy density:

U =
1
2
(ε ·σ) =

1
2

(
3

∑
i=1

3

∑
j=1

εi jσi j

)
. (5)

The elastic force per unit volume at a point xi is the nega-
tive gradient of the strain energy density with respect to this
point’s displacement ui (the directional derivative∇ui ). For
a Hookean material, this expression can be written as

fi =−∇uiU =−1
2
∇ui(ε ·Cε) =−σ∇ui ε. (6)

2.2. Volume Conservation

Green’s strain tensor given in Eqn. (3) measures linear elon-
gation (normal strain) and alteration of angles (shear strain)
but is zero for a volume inverting displacement field. Thus,
volume inversion does not cause any restoring elastic body
forces. To solve this problem, we add another energy term

Uv =
1
2

kv(|J|−1)2 (7)

that penalizes deviations of the determinant of the Jaco-
bian from positive unity, i.e. deviations from a right handed
volume conserving transformation. The corresponding body
forces are

fi =−∇uiUv =−kv(|J|−1)∇ui |J|. (8)

2.3. Spatial Discretization

In order to use these continuous elasticity equations in a nu-
merical simulation, the volume needs to be discretized. In
mesh based approaches, such as the Finite Element Method
(FEM), the volume is divided into elements of finite size.
In contrast, in mesh free methods the volume is sampled at
a finite number of point locations without connectivity in-
formation and without the need of generating a volumetric
mesh.

In a mesh free model, all the simulation quantities, such
as location xi, density ρi, deformation ui, velocity vi, strain
εi, stress σi and body force fi, are carried by the physically
simulated points (actually point samples), for which we use
the term phyxel (physical element) from here on. For each
simulated phyxel we have positions xi in body space, defin-
ing what we call the reference shape, and their deformed
locations xi +ui the deformed shape.

3. Dynamic Simulation

3.1. Overview

From a high-level view and for each time step ∆t, our simu-
lation loop can be described as follows

ut︸︷︷︸
displacements

→ ∇ut︸︷︷︸
derivatives

→ εt︸︷︷︸
strains

→ σt︸︷︷︸
stresses

→ ft︸︷︷︸
forces

→ ut+∆t︸ ︷︷ ︸
integration
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After initialization (Section 3.2) the simulation loop is
started. From the displacement vectors ui, we approximate
the nine spatial derivatives of three scalar fields u,v and w
(Section 3.3), which define both the strain and stress ten-
sors (Section 3.4). The forces acting at the points are then
computed as the negative gradient of the strain energy with
respect to the displacements (Section 3.5) and integrated in
time (Section 3.6), yielding new displacements ut+∆t at time
t +∆t.

3.2. Initialization

In continuum mechanics, quantities are measured per unit
volume. It is thus important to know how much volume each
phyxel represents. We compute the mass mi, density ρi and
the volume vi of a phyxel i as it is done in SPH. Each phyxel
has a fixed mass mi that does not change through the sim-
ulation. This mass is distributed around the phyxel via the
polynomial kernel

W (r,h) =

{
315

64πh9 (h2− r2)3 if r < h

0 otherwise
(9)

proposed in [MCG03], where r is the distance to the phyxel
and h is the support of the kernel. This kernel is normalized
meaning

∫
x W (|x− x0|,h)dx = 1, and has the unit [1/m3].

The density at phyxel i can then be computed as

ρi = ∑
j

m jwi j, (10)

where wi j =W (|x j−xi|,hi). Finally, the volume represented
by phyxel i is simply given by vi = mi/ρi. While the mass
represented by a phyxel is fix, the density and volume vary
when the reference positions of the phyxels change in case
of plastic deformation (Section 4.2).

The masses mi and support radii hi need to be initialized
before the simulation starts. We allow irregular initial sam-
pling of the volume. For each phyxel i we compute the aver-
age distance r̄i to its k nearest neighbors (we chose k = 10).
The support radius hi is chosen to be a multiple of r̄i (we
chose hi = 3r̄i). The masses are initialized as mi = s r̄3

i ρ,
where ρ is the material density and s is the same scaling fac-
tor for all phyxels, chosen such that the ρi resulting from
Eqn. (10) are close to ρ.

3.3. Moving Least Squares Approximation of∇u

In order to compute strain, stress and the elastic body forces,
the spatial derivatives of the displacement field ∇u are
needed (see Eqn. (1)). These derivatives are estimated from
the displacement vectors u j of nearby phyxels. To determine
neighboring phyxels, we use spatial hashing [THM∗03].

The approximation of ∇u must be first order accurate
in order to guarantee zero elastic forces for rigid body
modes. We therefore compute derivatives using a Moving
Least Squares formulation [LS81] with a linear basis. Let

us consider the x-component u of the displacement field
u = (u,v,w)T . Using a Taylor approximation, the continuous
scalar field u(x) in the neighborhood of xi can be approxi-
mated as

u(xi +∆x) = ui +∇u|xi ·∆x+O(||∆x||2), (11)

where ∇u|xi = (u,x,u,y,u,z)T at phyxel i. Given ui and the
spatial derivatives ∇u at phyxel i, we can approximate the
values u j at close phyxels j as

ũ j = ui +∇u|xi ·xi j = ui +xT
i j∇u|xi , (12)

where xi j = x j − xi. We measure the error of the approx-
imation as the sum of the squared differences between the
approximated values ũ j and the known values u j , weighted
by the kernel given in Eqn. (9)

e = ∑
j
(ũ j−u j)

2 wi j (13)

The differences are weighted because only phyxels in the
neighborhood of phyxel i should be considered and, addi-
tionally, fade in and out smoothly. Substituting Eqn. (12)
into Eqn. (13) and expanding yields e = ∑ j(ui + u,x xi j +
u,y yi j + u,z zi j− u j)2 wi j, where xi j,yi j and zi j are the x, y
and z-components of xi j respectively. Given the positions of
the phyxels xi and the sampled values ui we want to find the
derivatives u,x, u,y and u,z that minimize the error e. Setting
the derivatives of e with respect to u,x, u,y and u,z to zero
yields three equations for the three unknowns(

∑
j

xi jx
T
i jwi j

)
∇u|xi = ∑

j
(u j−ui)xi jwi j (14)

The 3 by 3 system matrix A = ∑ j xi jx
T
i jwi j (the moment ma-

trix) can be pre-computed, inverted and used for the com-
putation of the derivative of v and w as well. If A is non-
singular we have the following formula for the computation
of derivatives:

∇u|xi = A−1

(
∑

j
(u j−ui)xi jwi j

)
. (15)

However, if the number of phyxels within the support ra-
dius h in the neighborhood of phyxel i is less than 4 (includ-
ing phyxel i) or if these phyxels are co-planar or co-linear
A is singular and cannot be inverted. This only happens if
the sampling of the volume is too coarse. To avoid problems
with singular or badly conditioned moment matrices, we use
safe inversion via Singular Value Decomposition [PTVF92].

3.4. Updating Strains and Stresses

With Eqn. (15) we compute for each simulated phyxel i the
spatial derivatives of the deformation field at the phyxel’s lo-
cation xi based on the displacement vectors u j of neighbor-
ing phyxels j. Using Eqns. (1), (3) and (4) the Jacobian Ji,
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the strain εi and the stress σi at phyxel i can all be computed
from these derivatives:

Ji←
∇u|Txi

∇v|Txi

∇w|Txi

+ I, εi← (JT
i Ji− I), σi← (C εi).

3.5. Computation of Forces via Strain Energy

As a basic unit, analogous to a finite element in FEM, we
consider a phyxel i and all its neighbors j that lie within its
support radius hi (see Fig. 2).

vi

ui

uj

εi σi

xj

xi

Ui
∇u f i

f jhi

x x u+

Figure 2: As a basic unit, we consider a phyxel at xi and
its neighbors at x j within distance hi. The gradient of the
displacement field ∇u is computed from the displacement
vectors ui and u j , the strain εi from ∇u, the stress σi from
εi, the strain energy Ui from εi, σi and the volume vi and the
elastic forces as the negative gradient of Ui with respect to
the displacement vectors.

Based on Eqn. (5) we estimate the strain energy stored
around phyxel i as

Ui = vi
1
2
(εi ·σi) (16)

assuming that strain and stress are constant within the rest
volume vi of phyxel i, equivalent to using linear shape func-
tions in FEM. The strain energy is a function of the displace-
ment vector ui of phyxel i and the displacements u j of all its
neighbors. Taking the derivative with respect to these dis-
placements using Eqn. (6) yields the forces acting at phyxel
i and all its neighbors j

f j =−∇u jUi =−viσi∇u j εi (17)

The force acting on phyxel i turns out to be the negative sum
of all f j acting on its neighbors j. These forces conserve lin-
ear and angular momentum.

Using Eqn. (15), this result can be further simplified (see
Appendix A) to the compact form

fi =−2viJiσidi = Fedi (18)

f j =−2viJiσid j = Fed j, (19)

where

di = A−1

(
−∑

j
xi jwi j

)
(20)

d j = A−1(xi jwi j) (21)

For the volume conserving force defined in Eqn. (8) using
Eqn. (15) we get

fi =−vikv(|J|−1)

(Jv×Jw)T

(Jw×Ju)T

(Ju×Jv)T

di = Fvdi (22)

f j = Fvd j (23)

Using the definition of the vectors di and d j we get for the
total internal forces:

fi = (Fe +Fv)A−1

(
−∑

j
xi jwi j

)
(24)

f j = (Fe +Fv)A−1(xi jwi j) (25)

The matrix product (Fe +Fv)A−1 is independent of the
individual neighbor j and needs to be computed only once
for each phyxel i in each time step ∆t.

3.6. Time Integration

The elastic strain energy Ui of a phyxel defined in Eqn. (16)
is an energy, not an energy density, because we multiply by
the phyxel’s rest volume vi. Thus, the elastic force derived
from it is a force and not a force per unit volume. The accel-
eration ai of a phyxel due to this force is therefore

d2ui

dt2 = ai = fi/mi. (26)

A large number of time integration schemes have been pro-
posed. Explicit schemes are easy to implement and compu-
tationally cheap, but stable only for small time steps. In con-
trast, implicit schemes are unconditionally stable but, com-
putationally and in terms of memory consumption, more
complex. We found that for our simulations, a simple Leap-
Frog scheme performs best in this trade-off. However, we
also provide the tangent stiffness matrix derived from the
elastic forces for implicit integration in Appendix B.

4. Plasticity Model

4.1. Strain State Plasticity

An elegant way of simulating plastic behavior, is by using
strain state variables [OBH02]. Every phyxel i stores a plas-
tic strain tensor εp

i . The strain considered for elastic forces
ε̃i = εi−εp

i is the difference between measured strain εi and
the plastic strain. Thus, in case the measured strain equals
the plastic strain, no forces are generated. Since εp

i is consid-
ered constant within one time step, the elasto-plastic forces
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(Equations (18) and (19)) are computed using σ̃i = C ε̃i in-
stead of σi. The plastic strain is updated at every time step
according to [OBH02].

Figure 3: An animation sequence, in which we elastically
and plastically deform Max Planck in real-time, switching
between material properties on the fly.

4.2. Deformation of Reference Shape

In contrast to mesh based methods, the mesh free approach
is particulary useful when the object deviates far from its
original shape in which case the original mesh connectivity
is not useful anymore. Using a mesh free method, the ref-
erence shape can easily adapt to the deformed shape. How-
ever, changing the reference positions of phyxels is danger-
ous: two phyxels from two different objects having reference
positions xi and x j might move within each others support,
even though their actual positions xi +ui and x j +u j are far
from each other. This large displacement vector difference
results in large strains, stresses and elastic forces, causing
the simulation to crash. Therefore, if the reference shape is
changed, both reference shape and deformed shape need to
be kept close to each other. We have found a very simple
way to achieve this, with which we can model highly plastic
materials, melting and flow: after each time step, we absorb
the deformation completely while storing the built up strains
in the plastic strain state variable.

forall phyxels i do
εp

i ← εp
i − εi

xi← xi +ui
ui← 0

endfor
forall phyxels i do update ρi,vi and Ai endfor

This way, both reference shape and deformed shape are
identical after each time step. The strain is not lost, but stored
in the plastic state variable. As our results show, this proce-
dure generates appealing animations of highly deformable
and plastic materials (Fig. 5).

The volume conserving term described in Section 2.2
measures volume deviations from the reference shape to the
deformed shape. Because the original shape information is
lost, the term cannot guarantee volume conservation over
time. Therefore, for melting and flow experiments, we add
pressure forces based on SPH as suggested in [DC99] and
use their spiky kernel [DC96] for density computations.

5. Surface Animation

In this section, we describe the animation of the point-
sampled surface after a simulation step. First, we present a
fast approach which makes use of the continuously defined
displacement vector field u(x). We then extend this approach
to a high quality surface animation algorithm, which can
handle arbitrary topological changes while still preserving
detail by employing multiple surface representations. In the
following, the term surface elements (or surfels for short)
denotes the point-sampled surface representation.

5.1. Displacement Approach

The idea of the displacement-based approach is to carry the
surfels along with the phyxels. The displacement vector us f l
at a known surfel position xs f l is computed from the dis-
placements ui of the neighboring phyxels. For this we need
to define a smooth displacement vector field in R

3, which is
invariant under linear transformations. This can be achieved
by using a first order MLS approximation. However, we have
already obtained such an approximation of∇u, described in
Section 3.3, which we reuse. Thus, we can compute the dis-
placement vector us f l as

us f l =
1

∑i ω(ri)
∑

i
ω(ri)(ui +∇uT

i (xs f l−xi)), (27)

where ω(ri) = ω(||xs f l − xi||) = e−r2
i /h2

is a Gaussian
weighting function. The ui are the displacement vectors of
phyxels at xi within a distance h to xs f l .

We proceed similar to [PKKG03] by applying the dis-
placement us f l to both the surfel center and its tangent axes.
A surfel splitting and merging scheme is applied to main-
tain a high surface quality in the case of large deformations,
see [PKKG03] for details.

5.2. Multi-Representation Approach

The multi-representation approach is motivated by two de-
sirable effects: (a) when parts of a model fracture or merge,
topological changes need to be handled, and (b) when col-
liding a highly deformable model with a rigid object (e.g.
a casting mold), the model must adapt to the possibly very
detailed shape and retain it after solidifying. An example is
shown in Fig. 9 where the Max Planck Bust is melted, flows
into the Igea model and solidifies. While implicit surfaces
can easily represent highly complex topology and guarantee
global consistency by construction, explicit representations
are more suitable for detailed surfaces and fast rendering. To
achieve the effects described above, we employ both repre-
sentations.

5.2.1. Implicit Representation

Desbrun and Cani suggested using an implicit representation
for coating a set of skeletons [DC95]. We use the same idea
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to associate a field function fi : R
3 �→ R to each phyxel pi.

To obtain a continuously defined field in space, the contribu-
tions of all phyxels within a certain distance d to x are added
up, i.e. F(x) = ∑i,r<d fi(x). LI is then defined as an iso-value

S of F , i.e. LI = {x ∈ R
3 | F(x)−S = 0}.

Many different field functions have been presented in the
literature (e.g. [BS95, WW89]). We chose the field function
from [Bli82], which is suitable for our application:

fi(x) = be−ar2

, (28)

where x is an arbitrary point in space and r = ‖x−xi‖. The
constants a and b can be computed as a = −B

R2 and b = Se−B,
where R is the radius in isolation and B the (negative) blob-
biness.

For an initial sampling of the implicit surface, all surfels
of the model are projected onto it, i.e. we need to find the
projected position xL of a surfel x such that F(xL)− S =
0. This is a classical root finding problem, we refer to
[PTVF92] for further information. We then apply our resam-
pling operator described in Section 5.2.4 to ensure that the
implicit surface is hole-free and regularly sampled.

After each animation step, the surfels are animated to-
gether with the implicit surface by employing the displace-
ment approach (Section 5.1) to get an estimation of their new
position, followed by a projection onto the implicit surface.
Finally, the resampling operator is applied again.

5.2.2. Detail Representation

While the implicit surface LI can easily handle any topologi-
cal changes, it can represent only blobby surfaces. Therefore
we introduce the detail representation LD which represents a
highly detailed model. At the beginning of the animation,
LD is equal to the model surface. When topological changes
occur, the surface locally looses its detail and LD converges
locally to LI .

First we need a metric which quantifies (local) topologi-
cal change. We refer to the phyxels which lie on the bound-
ary Γ of the phyxel cloud as outside phyxels, and phyxels
which are enclosed by the boundary as inside phyxels. We
observe, that when a model fractures, inside phyxels will be-
come outside phyxels, and vice-versa if parts are merged,
outside phyxels will become inside phyxels. We can deter-
mine the probability that a phyxel p belongs to Γ by Prin-
cipal Component Analysis of the neighboring phyxels. The
idea is, that if we look at a phyxel inside the volume, all
eigenvalues are expected to be similar, while for a phyxel
on the boundary, one eigenvalue is expected to be small.
We can efficiently compare the eigenvalues by computing
the trace and the determinant of the local covariance matrix
C = ∑n

i=1(xi−x)(xi−x)T , where x = 1
n ∑n

i=1 xi and n is the
number of phyxels in the support radius of p. The determi-
nant det(C) is equal to the product of the three eigenvalues

and the trace is equal to their sum. Thus, we can estimate the
probability P that p is an outside phyxel as

P = 1− det(C)
(trace(C)/3)3 . (29)

We can now estimate the local change of topology ∆Γt at
time step t by comparing the sum Pi of the neighboring phyx-
els of a surfel with the last time step, i.e.

∆Γt =
λ
n

∣∣∣∣∣ n

∑
i=1

Pt−1
i −

n

∑
i=1

Pt
i

∣∣∣∣∣ , (30)

where λ is a constant weighting factor.

LD'LD LI

Figure 4: Left: every surfel from LD (red) is projected onto
LI (blue). Right: the blending factor between these two po-
sitions (and normals) is computed from ∆Γ, the estimated
physical boundary variation between two time steps. This re-
sults in the updated L′

D. Note: lighter phyxels have a higher
boundary probability P.

To transfer LD to LI , the function-values F(xs f l) of the
surfels need to approach the iso-value S of LI . Assume a
surfel initially has a function-value s0, its function-value at
time step t−1 is st−1, and ∆Γt

tot = min(1, ∑i=1...t ∆Γi).
When we assume that the function-values change linearly,
we can estimate the new function-value by linear interpola-
tion, i.e. s̃t = s0 + ∆Γt

tot(S− s0). We can now use this esti-
mation to compute a blending factor bI for blending both
position and normal of the surfel with its projection onto
LI : bI = (s̃t − st−1)/(S− st−1). The blended surfel posi-
tions are computed as x′D = bIxI +(1− bI)xD, the normals
are blended similarly. After the blending, all surfels in LD
are updated, resulting in L′

D (Fig. 4), thereby discarding the
original shape.

5.2.3. Contact Representation

Assume that an object is melted and flows into another object
(i.e. a mold), which is itself point-sampled (Fig. 9). In this
case, the surfels which change from inside the mold to out-
side (i.e. collide with the mold) need to adapt to its surface.
Whether a surfel is inside or outside can be determined effi-
ciently as described in [PKKG03]. A colliding surfel is then
projected onto the MLS surface [Lev01, ABCO∗03] of the
mold, setting its normals equal to the normal of the MLS sur-
face and interpolating its color from the neighboring surfels.
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Figure 5: A soft elastic Max Planck model is initially held by the cranium, then melted and dropped to the ground plane.

The affected surfels are stored as the contact representation
LC and used for rendering instead of the LD representation.

5.2.4. Resampling

In the case of topological changes, the splitting and merg-
ing of surfels as described in Section 5.1 is not sufficient.
Because with point-sampled surfaces we do not have to deal
with consistency constraints, we can easily resample the sur-
face by iteratively applying a combination of resampling and
relaxation. First, we efficiently detect under- and oversam-
pling locally by computing, for each surfel, the number k of
nearest neighbors which are in a certain distance to the sur-
fel. This number is compared with two user defined thresh-
olds minnb and maxnb. If k is larger than maxnb, the surfel
is deleted with a probability of k/(2maxnb). If k is smaller
than minnb, the surfel is split minnb− k times and the new
surfels are distributed in the tangent plane of the surfel. Our
resampling operator requires an approximately uniform dis-
tribution of the surfels. To achieve this and to spread the sur-
fels over uncovered surface areas in the case of topological
changes, a repulsion scheme is applied to the surfels, simi-
lar to [PGK02]. The idea to use a combination of spreading
and splitting of the surfels is similar to the particle distribu-
tion scheme proposed in [WH94].

5.2.5. Zombies

After a resampling step, the surfels need to be repro-
jected onto the surface. To avoid error accumulation, we
carry along two surface representations: The original sur-
fels (called zombies) and the resampled surfels, whereby
only the resampled surfels are displayed. Initially, at the
beginning, both representations are equal. When the an-
imation starts, the zombies are animated as described
above, but without resampling. The resampled surfels are
simply displaced and then projected onto the MLS sur-
face [Lev98, Lev01] defined by the zombie surfels. This
works well as long as the topology does not change. Be-
cause of the blending, the closest zombie surfel is expected
to lie on LI in this case. Therefore, we check if the function-
value of the closest zombie is equal to the iso-surface S. If
this is the case we project the surfel onto LI instead of the

MLS surface. Finally, we use the zombie surfels to inter-
polate attributes like color of the resampled surfels, similar
to [PKKG03].

6. Results

6.1. Real-Time Deformation

For real-time demonstrations of our algorithm, we use the
displacement-based surface animation approach described
in Section 5.1, as it is capable of animating a surface
model with 10k surfels and approximately 200 phyxels at 27
frames per second on a P4 2,8 GHz Laptop with an NVidia
GeForce FX Go5600 GPU. In Fig. 3 we let an elastic model
with E = 0,5 · 106N/m2 bounce off the ground plane: the
model exhibits realistic elastic behavior. Shortly before hit-
ting the ground a second time, we switch to a plastic mate-
rial, resulting in an irreversible dent. Afterwards we switch
back to a stiff elastic material with E = 0,5 ·107N/m2. The
model has taken considerable damage, but the surface is
still skinned correctly. A real-time melting animation with
an adaptively sampled surface is shown in Fig. 5, where the
model exhibits realistic elastic, plastic, melting and flowing
effects.

physics surface + frame rate
rendering

Max/200/10k/expl 15 ms 22 ms 27 fps

Max/200/10k/impl 22 ms 22 ms 22 fps

Max/400/20k/expl 35 ms 50 ms 12 fps

Max/400/20k/impl 60 ms 50 ms 9 fps

Table 1: Timings of our system, running on a 2,8 GHz Pen-
tium 4 Laptop with a GeForce FX Go5600 GPU.

Some timings of our algorithm are given in Table 1. The
first column describes the model, the number of phyxels, the
number of surfels and whether explicit or implicit integration
was used (model/phyxels/surfels/{expl|impl}).
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6.2. High-Quality Surface Animation

To demonstrate the multi-representation approach of Sec-
tion 5.2, we let a highly plastic 53k surfel model of Max
Planck flow through a funnel into the Igea model (134k sur-
fels), as shown in Fig. 9. The Max Planck model is sampled
with 600 phyxels. While the Max Planck model is squeezed
through the funnel, its detail vanishes (i.e. the detail level ap-
proaches the implicit representation LI). When the surface of
the Max Planck model gets in contact with the Igea model, it
adapts to detailed features. After the Max Planck model has
filled the Igea model, we let the initially highly deformable
substance solidify, i.e. we set LC equal to LD and reduce the
plastic creep. Finally, we let it drop to the ground plane,
where it exhibits realistic elastic behavior (see our video).
On average, the animation with our high quality software
renderer takes 8 seconds per frame on a 2,8 GHz Pentium
4. Due to resampling, the final solidified model consists of
115k surfels.

A second example of our multi-representation approach is
shown in Fig. 10. Here, we initially fix the shock of hair of
the Igea model. Due to gravitation, part of the model splits
off and drops to the plane. Note that at places where no topo-
logical changes take place, detail is preserved. Afterwards,
we release the shock of hair, letting it merge with the rest of
the model. Note that the texture of the model is preserved
due to the interpolation of zombies. Initially, the Igea model
has 134k surfels. This number is increases to 340k surfels
during the animation due to topological changes. After the
two parts have merged towards the end of the animation se-
quence, the number of surfels is 105k.

6.3. Range of Physical Parameters

In Figure 6 we demonstrate the effect of Poisson’s Ratio ν
for volume conservation. For the image in the middle we
set ν to zero. When the model is pulled vertically, its width
does not change and its volume is not conserved. In contrast,
with a ratio of 0.49 the width adjusts to the stretch thereby
conserving the volume of the object (right).

Figure 6: The effect of Poisson’s Ratio: the undeformed
model (left) is stretched using a Poisson Ratio of zero (mid-
dle) and 0.49 (right).

Figure 7 shows a melting experiment that demonstrates

the range of material properties that can be simulated with
our method. We first drop a soft cuboid object on a spike.
It melts and deforms under gravity with a Young’s Mod-
ulus of E = 104N/m2, high ccreep and cmin = 0 (see Sec-
tion 4.1). The reference shape is deformed along with the de-
formed shape (see Section 4.2). After the material has come
to rest, the Young’s Modulus is increased to E = 105N/m2

and ccreep is set to zero. The user can then lift the donut up
as an elastic object.

Figure 7: Demonstration of a change in topology, using the
procedure described in Section 4.2. A highly plastic material
melts into a circular well. After the material is made elastic,
the user can lift up the resulting donut.

Using implicit integration (with a time step of 0.01 sec-
onds), we can set the Young’s Modulus E as high as
108N/m2 without stability problems. When setting E to
106N/m2, explicit integration (with 15-20 time steps of
0.0001 seconds per animation frame) also works stable at
interactive rates. Setting E = 105N/m2 yields very soft ob-
jects, which exhibit detailed, local deformations under exter-
nal excitation. These sometimes unwanted oscillating effects
are damped out using implicit integration.

7. Limitations

In its current state, our model has a few limitations.

• We assume a Hookean material. Therefore, the model al-
lows material anisotropy, but only linear stress-strain re-
lationships.

• MLS (Section 3.3) only works well if each phyxel has at
least three neighbors at non-degenerate locations, thus the
approach only works for volumes, not for 2D layers or 1D
strings of phyxels.

• Close phyxels always interact, so for fracture simulations,
the model would have to be extended. Furthermore, the
current surface animation algorithm supports fractures to
a limited extent only. In particular, we will have to extend
it to cope with sharp features, which occur in brittle ma-
terial fracturing.

8. Conclusions and Future Work

In this paper we have presented a novel, mesh-free animation
algorithm derived from continuum mechanics, which uses
point samples for both volume and surface modeling. Our
system is capable of simulating a wide range of elastically
and plastically deformable objects which can melt, flow, so-
lidify split and merge. An interesting feature is the capability
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to switch between any of these physical conditions at run-
time, resulting in visually plausible and interesting effects.
We have also described methods by which we can animate
a detailed surface along with the physical representation, in-
troducing a trade-off between real-time performance and vi-
sual fidelity.

In general, the engineering field of mesh free methods is a
vast, yet relatively new area, in which we see great potential
for computer graphics, animation and simulation research.
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Appendix A: Derivation of the Elastic Force

According to Eqn. (15) we have for the derivatives of the
x-component u of the displacement field:

∇u =

 u,x

u,y

u,z

= A−1

(
∑

j
(u j−ui)xi jwi j

)
(31)
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Taking the derivatives with respect to the displacement u j =
(u j,v j,w j) of a phyxel other than the center phyxel i yields

∂
∂u j
∇u = ∂

∂u j
Ju = A−1 (xi jwi j

)
= d j (32)

∂
∂v j
∇u = ∂

∂v j
Ju = 0 (33)

∂
∂w j
∇u = ∂

∂w j
Ju = 0 (34)

with analog results for ∇v and ∇w. For the center phyxel i
the vector d j needs to be replaced by the vector di =−∑ j d j.

Green’s strain tensor is defined in Eqn. (3). For the six
independent components of the strain tensor we, thus, have

εxx

εyy

εzz

εxy

εyz

εzx

=



2u,x +u,xu,x + v,xv,x +w,xw,x

2v,y +u,yu,y + v,yv,y +w,yw,y

2w,z +u,zu,z + v,zv,z +w,zw,z

u,y + v,x +u,xu,y + v,xv,y +w,xw,y

v,z +w,y +u,yu,z + v,yv,z +w,yw,z

w,x +u,z +u,zu,x + v,zv,x +w,zw,x

 . (35)

Taking the derivative of the first strain component εxx with
respect to u j using Eqns. (32) - (34) yields

∇u j εxx = 2
[
Jx 0 0

]
d j (36)

The derivatives of the remaining strain components are

∇u j εyy = 2
[
0 Jy 0

]
d j (37)

∇u j εzz = 2
[
0 0 Jz

]
d j (38)

∇u j εxy =
[
Jy Jx 0

]
d j (39)

∇u j εyz =
[
0 Jz Jy

]
d j (40)

∇u j εzx =
[
Jz 0 Jx

]
d j (41)

Finally, according to Eqn. (6) for the body force at phyxel
j we get

f j = −vi(σxx∇u j εxx +σyy∇u j εyy +σzz∇u j εzz

+2σxy∇u j εxy +2σyz∇u j εyz +2σzx∇u j εzx)

= 2vi Jσ d j

Mmaxplanck =




Figure 8: A 2×2 "matrix" of deformed Max Plancks.

Appendix B: Implicit Integration

Using implicit Euler integration, the positions and velocities
of all phyxels i at the next time step are computed as follows

xt+1 = xt +∆tvt+1 (42)

Mvt+1 = Mvt +∆tF(xt+1), (43)

where the vectors x and v contain the positions and veloci-
ties respectively of all phyxels in the system. The matrix M
is diagonal and contains the masses of the phyxels on its di-
agonal. The function F computes all body forces based on
the positions of all phyxels. To compute the velocities at the
next time step, Eqn. (42) is substituted into Eqn. (43) and F
is approximated linearly:

Mvt+1 = Mvt +∆tF(xt +∆tvt+1) (44)

≈ Mvt +∆tF(xt)+∆t2K|xt ·vt+1, (45)

where K|xt =∇xF(xt) is the Jacobian of F and the tangent
stiffness matrix of the system evaluated at position xt . By
rearranging the above equation, we get the linear system for
the unknown velocities vt+1(

M−∆t2K|xt

)
vt+1 = Mvt +∆tF(xt) (46)

Once the new velocities vt+1 are known, Eqn. (42) can
be used to compute the new positions xt+1 explicitly. We
now derive the stiffness matrix K|x =∇xF(x) for the elastic
forces described in Section 3.5. For n phyxels K is 3n× 3n
dimensional and composed of 3× 3 dimensional blocks
Kkl | k, l ∈ (1 . . .n). The submatrix Kkl has the form

Kkl =∇ul fk =
(

d
dul

fk,
d

dvl
fk,

d
dwl

fk

)
(47)

and describes the linear part of the dependence of the body
force fk acting on phyxel k on the displacement ul of phyxel
l. If phyxels k and l both appear in neighborhoods of m dif-
ferent phyxels the submatrix Kkl is a sum of m force deriva-
tives. For the elastic force we get

d
dul

fk =−2vk
d

dul
(Jσ) ·dk

=−2vk

(
d

dul
Jσ+J

d
dul

σ
)
·dk

=−2vk

dT
l
0
0

 σ+JC
(

JudT
l +dlJ

T
u

) ·dk,

and for the volume conserving force the derivatives are

d

dul
fk =− kvvk

d

dul

(|J|− 1)

(Jv × Jw)T

(Jw × Ju)T

(Ju × Jv)T

dk

=− kvvk(
d

dul
(|J|− 1)

(Jv × Jw)T

(Jw × Ju)T

(Ju × Jv)T

+ (|J|− 1)
d

dul

(Jv × Jw)T

(Jw × Ju)T

(Ju × Jv)T

)dk

=− kvvk(

∣∣∣∣∣∣
dl
JT

u
JT

w

∣∣∣∣∣∣ ·
(Jv × Jw)T

(Jw × Ju)T

(Ju × Jv)T

+ (|J|− 1)

 0
(Jw × dl )

T

(dl × Jv)T

)dk .
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Figure 9: A melting model of Max Planck flows through a funnel into the Igea casting mold.

Figure 10: A melting model of Igea which splits, merges and solidifies.

Figure 11: Animating a detailed octopus.

Figure 12: Melting and solidification with topological changes.
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