
IEEE INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS (SMI) 2009 1

GridMesh: Fast and High Quality 2D Mesh Generation for
Interactive 3D Shape Modeling

Andrew Nealen1, Justus Pett2, Marc Alexa2,3, Takeo Igarashi4

1Rutgers University, 2TU Berlin, 3Walt Disney Animation Studios, 4The University of Tokyo / PRESTO JST

Abstract—In this paper we present an algorithm
for watertight meshing of closed, sketched curves.
The sketch is resampled as a piecewise linear (PWL)
curve and placed onto a triangular grid. A small
boundary (seed) that describes a closed path along
grid points is placed inside the sketch and grown
until it resembles the sketch. Vertices of the evolved
grid boundary are projected onto the stroke to estab-
lish a bijective, ordered mapping. Finally, valences
along the boundary are optimized while retaining
the previously established mapping. The resulting
mesh patch can be duplicated, stitched and inflated
to generate a new shape, or used to fill a hole in an ex-
isting shape. We have implemented our algorithm in
FiberMesh [1], an interactive sketch based interface
for designing freeform surfaces, where it is used for
the all mesh generation processes. The triangulation
generated with our algorithm improves the quality
of the model by reducing the number of irregular
vertices, while running at real time rates.

Keywords—Meshing; Mesh Generation; Interac-
tive Shape Modeling; Sketch Based Modeling; Fair
Surface Design

1. INTRODUCTION

Current tools for the design of 3D shapes and surfaces
provide a vast amount of modeling operations. At the
same time however their complexity has significantly
increased. In related research, many tools that try to
hide this complexity exist. Some of which use design
metaphors like sketching [2], [3], [4], [5], [1], where,
in order to create a 3D model, the planar user sketch
is triangulated and inflated. In the case of FiberMesh,
the mesh is generated by intersecting the sketch with a
regular triangle grid [1], and thereafter inflated by means
of functional optimization. In the original paper [1], the
problem of mesh generation is described rather briefly.
To fill this gap, we have designed a fast and robust
meshing algorithm, which generates a semi-regular mesh
with only few irregular vertices.

The algorithms presented in this paper are intended
to improve the quality of 3D models in FiberMesh,
however, they can also be easily adopted to other tools
and replace existing surfacing algorithms. Our main
contributions are:

• A fast, robust algorithm for the meshing of
planar sketches (Section IV). We present an al-
gorithm that uses a regular triangle grid to mesh
a planar sketched curve in real time. Stitching
the obtained patches results in a small number of
irregular vertices (Figure 1).

• A method for meshing 3D polylines which lie
on developable surfaces (Section V). We show
how the algorithm can be adjusted to 3D curves
that can easily be parameterized in 2D, and have a
fixed number of boundary vertices. This case occurs
after a cut operation, where a hole is filled with a
boundary compatible triangle mesh (Figure 2).

Our approach uses a regular 2D triangle grid, as well
as a closed boundary curve that passes through the grid
vertices and is grown until it resembles the user sketch
(Figure 1).

The general problem of meshing is widely covered
in existing literature, and a comprehensive overview is
given by Lamot and Zalik [6]. The first algorithm for
polygon triangulation was introduced by Lennes [7],
who proposed inserting diagonals between pairs of
vertices of the polygon. The inductive proof for the
existence of a diagonal triangulation was proposed by
Meisters [8]. Thereafter, various diagonal insertion al-
gorithms were published [9], [10], [11], [12], where
the main focus lies in optimizing the worst case run-
time. However, they do not measure the quality of the
resulting triangulation. A Delaunay triangulation for a
set of vertices is one where no other vertex lies inside
the circumcircle of any triangle. Constrained Delaunay
triangulation is more common than diagonal insertion
approaches, because it maximizes the minimum angle
of all triangles, resulting in a triangulation of higher
quality [13], [14], [15]. Approaches using Steiner points
add vertices inside the polygon in order to maximize the
interior angle of all triangles in the triangulation. Con-
sequently, the overall number of triangles is increased.
Algorithms using Steiner points try to maximize the
minimum angle while minimizing the number of ad-
ditional triangles. Some of the existing implementations
are based on Delaunay triangulation [16], [17], while
others use different approaches [18], [19], [20].

Grid-based meshing algorithms are used in various
domains such as tetrahedral mesh generation (see [21]
and references therein), and have also been applied in
the setting of 2D/3D shape deformation [22], [23], where
they are used to create the deformation scaffolding.

1 2 3

Fig. 1. Mesh generation for a sketched, planar curve: the user curve and the regular triangle grid overlay (1) with the seed 1-ring in dark gray.
The seed is repeatedly grown until the sketch boundaries are reached and a bijective, ordered mapping between user curve and grid curve is
established (2). Turning angles in the grid curve are optimized w.r.t. valences and resemblance of the user curve, while retaining the previous
mapping (3), resulting in a watertight mesh with only few irregular vertices (4).

2 3

4 5 6

1

Fig. 2. The general process of cut meshing. A cut is applied to an
existing 3D model (1). A cut stroke is drawn across the model (2).
One part selected by the user is deleted (3). The hole is remeshed
using a boundary compatible triangle grid (4). The obtained patch of
triangles is stitched on the model along the cut stroke (5 and 6).

The quality of the resulting triangulation in many
previous approaches is measured based on different re-
quirements, and most do not rely on interactive/realtime
response. Sketch-based modeling tools however heavily
rely on interactive response, and furthermore require
a sufficient number of triangles: the model is inflated
after initial meshing, and we can achieve more smooth,
visually pleasing results when using a larger number of
triangles with regular vertices. In our grid-based method,
the mesh resolution can be easily adjusted. This is also
important, since the resolution has a direct impact on
the response time of the surface optimization after a
deformation operation.

2. OVERVIEW AND PRELIMINARIES

We start with a short description of the general
meshing procedure before describing the details. Please
refer to Figure 1 for the steps described in the following.
The user draws a closed curve that defines the silhouette
of the mesh being created; this curve is intersected with
a triangle grid (step one). A set of triangles lying inside
the stroke is identified, and the boundary vertices of
the retained triangle patch are mapped onto the curve
(step two). Then the patch boundary is optimized w.r.t.
valences (step three). The resulting patch of triangles
is cloned and stitched together along the boundary

(similar to a pillowcase) to obtain a watertight polyhe-
dron. Finally, the interior vertex positions are computed,
using the mapped locations on the sketched curve as
positional boundary constraints (step four). FiberMesh
computes the positions of interior vertices by functional
optimization [1], resulting in a smooth shape (Figure 1,
right).

For the robustness of the procedure, the identification
of triangles is crucial: the boundary of the set of triangles
must form a single and simple polygon. Note that merely
identifying the triangles that are lying (fully or partially)
inside the stroke could lead to disconnected, degenerate
or nonmanifold patches.

If the triangles form a single, simply connected com-
ponent, the quality of the resulting mesh is mainly
determined by two factors: (1) the similarity to the
original user sketch, and (2) the regularity of the ver-
tices1. These factors can only be influenced when the
curve is mapped to the triangle grid (steps 2 and 3
in Figure 1). At this point a boundary is defined on
the grid that, ideally, should resemble the original user
sketch. Furthermore, the grid points on the boundary
are the only mesh vertices which can be irregular after
cloning and stitching; all interior vertices are regular by
construction.

2.1 Triangle grid and user sketch

We define a triangle grid as an isometric grid formed
by tiling the plane regularly with equilateral triangles.
We call the vertices of these triangles the grid points
pi and the set GP. One grid point is adjacent to six
triangles. The distance dij between grid points pi and
pj is defined as the minimum number of edges between
these points. Furthermore we use the neighbors relation:
N ⊂ GP×GP = {(pi, pj)|dij = 1}. Accordingly, each
grid point has exactly six neighbors. When moving along
a triangle grid we can define six different directions.

The process of sampling the user sketch results in
a piecewise linear (PWL) curve. The samples are the
curve vertices (v0, v1, ..., vn), which are connected by
segments (v1 − v0, v2 − v1, ..., vn − vn−1). For closed
curves there is an additional segment v0 − vn.

1A triangle mesh vertex is regular if it has valence six, meaning it
has six incident edges

2

2.2 Boundary and topology

The boundary of a set of triangles in the grid is an
ordered sequence B of grid points pi which describes
a closed path on the grid. The set of enclosed trian-
gles forms a single, simply-connected component if the
boundary is simple and closed, i.e. every grid point on
the boundary appears only once in B (pi = pj ⇒ i = j)
and the first and the last grid point B are neighbors
(p0, p|B|−1) ∈ N . We will call the elements of B
boundary vertices. In Figure 3 the left image shows
an example of a valid boundary, while the right image
shows an example of an invalid boundary. A crucial
point of the algorithm we describe later, is that it
guarantees a valid boundary. This is achieved by starting
with a small patch inside the user stroke, and growing
the patch triangle by triangle while preserving the simple
and closed boundary property.

Note that it is easy to induce a bijection between
the boundary and the PWL user stroke: since both
curves are simple, any parameterization over the circle
of both curves is sufficient. If the two curves are close
enough to each other (details on this are elaborated later)
the bijection can also be established by orthogonally
projecting the grid points onto the user stroke.

Fig. 3. Left: example of a valid boundary. Right: examples of invalid
boundary. The boundary contains two loops. The white vertices would
appear twice in the ordered sequence defining the boundary.

3. MESH QUALITY CRITERIA

3.1 Similarity to the original user sketch

We want to obtain a 3D mesh with a silhouette as
similar to the original curve drawn by the user as possi-
ble. However, for densely sampled curves, reproducing
every detail can also become a problem. Choosing a
triangle grid which allows reproducing all details of the
user sketch could result in meshes with a very high
resolution. In order to allow realtime interaction we
therefore need to find a compromise between a good
resemblance of the curve and a mesh resolution that
still permits interactive feedback.

The similarity to the original user sketch is also
influenced by the way the boundary points are mapped
to the sketch. Depending on the mapping procedure,
we may be able to preserve more details. This will be
discussed in Section IV-C.

3.2 Regularity of the mesh’s vertices

First of all, we examine how the different possible
boundary configurations on the triangle grid relate to
the valence of their corresponding vertices in the final
watertight mesh. These configurations can be reduced to
four valid cases, and one invalid case. Figure 4 shows
the four valid configurations, where the inner stroke

1 2 3 1
2
3

1 2

3

1 2
3

1
2
3

1
2
3

1
3 1

2
32

v = 4 v = 6

v = 5 v = 8

v = 3 v = 4

v = 6 v = 10

2D

2D

2D

2D

3D

3D

3D

3D

Fig. 4. The four valid boundary configurations and their resulting
mesh vertices in the final watertight mesh.

area is highlighted dark gray. In the right column, the
corresponding part of the 3D mesh is shown, and the
duplicated part of the triangle patch is marked light gray.

If the center vertex (2) has valence v in the patch, it
turns into a vertex with valence 2v− b in the duplicated
and stitched mesh. Here, b = 2 is the number of incident
boundary vertices. Ideally, each vertex in the mesh is
regular, i.e. has valence 6, which means v = 4 and
coincides with the case of no direction change as we
move along the boundary from vertex 1 to 3. Since any
vertex in a closed mesh has valence at least 3 we require
2v − b ≥ 3 ⇔ v ≥ (b + 3)/2. In other words, the
case of a boundary vertex in the patch on the tip of
a triangle is prohibited (Figure 5). More generally, any
edge that is incident upon two boundary vertices, but not
part of the boundary, leads to a non-manifold situation
in the final mesh. A more intricate case is shown in
Figure 9, where the boundary comes close to itself and
the edge connecting two boundary vertices is incident
on four triangles in the resulting stitched mesh, leading
to a non manifold edge. Concluding, mesh edges that
are not part of the boundary, yet are connected to two
boundary vertices, must be avoided.

1

2

3

1 2

3

Fig. 5. An invalid boundary configuration and its resulting mesh
vertices

We will attempt to minimize boundary vertices with
valence different from four or, equivalently, direction
changes along the boundary. However, elementary cal-
culations using Euler’s formula show that the sum of
valences of all vertices on the boundary B is 4|B| − 6,
which means that not every vertex can have valence 4;
we need at least 6 vertices with valence 3, and additional
valence 3 vertices for each vertex with valence greater 4.
Our goal is to balance this number (= vertex regularity)
with geometric accuracy (= similarity to the user sketch).

3

4. MESHING A PLANAR SKETCH

Our algorithm can be stated as follows

1) In a preprocessing step, the sketched curve is
faired. This makes it easier to identify features
along the curve based on curvatures, and also
widens potential constrictions so that a coarser
triangulation is sufficient to grow a triangle patch
inside the stroke (Section IV-A).

2) We place a small initial boundary (the circularly
connected 1-ring neighbors of a single vertex)
inside the sketched curve and extend the patch
until any further growth would cause it to intersect
with the user sketch. This step ensures that a
valid boundary is developed, which is close to the
sketched curve (Section IV-B).

3) The grid points on the boundary of the patch are
mapped to the sketched curve so as to improve the
geometric accuracy of the boundary relative to the
sketch (Section IV-C).

4) Vertex valences are optimized by adding addi-
tional triangles/vertices to the patch. This re-
moves the invalid cases discussed earlier and
tries to additionally remove boundary vertices
with valence different from 4. The identification
of boundary and sketched curve is induced by
arc length parameterization of the modified parts
(Section IV-D).

As a result, we obtain a boundary with an optimized
number of direction changes, whose vertices have all
been mapped onto the curve.

4.1 Fairing the sketch and handling narrow parts

Especially for low grid resolutions, sharp features or
narrow parts in the user sketch can not be properly
represented. These cases can be detected in a preprocess,
and one possibility is to increase the grid resolution,
such that all features can be approximated. In our
system, the grid resolution is determined by the user.
So, instead, we (locally) fair the user sketch to remove
features which are larger than 1.5 times the grid edge
length. Also, around narrow parts of a stroke, there are
no triangles which lie fully inside the sketched curve.
We fair the concerned parts of the curve to widen the
area (Figure 6).

Fig. 6. Left: a narrow part of a sketched curve leading to untimely
growth termination. Center: a sketched curve with a narrow region in
the middle. Right: local fairing leads to a widened area.

4.2 Initialization and growing
We start with a small boundary consisting of six

vertices, which is grown until the user sketch is closely
resembled. The user is able to adjust the grid and
therefore the mesh resolution according to smoothness
requirements and the desired performance.

The boundary is grown in a breadth first manner.
Expansion is terminated if a triangle edge would in-
tersect the sketched curve. Depending on the actual
requirements, the first grid point lying outside can either
be added to the boundary or not. In a classic breadth
first search implementation, any adjacent vertex can be
traversed. Figure 7 (top row) illustrates why this is not
the case in our setting; the grid point marked white may
not be traversed from the current boundary, since adding
it would lead to an invalid boundary. However when
the boundary has grown further as depicted in Figure 7
(bottom row), adding the same point is now allowed
since this leads to a valid expanded boundary. We call
grid points that are valid to enqueue for a given boundary
as valid adjacent to the boundary. A grid point is valid
adjacent if at least two of its neighbors belong to the
boundary, and none of the edges connecting the grid
point to the boundary intersect the sketched curve.

Fig. 7. Top: adding the white vertex to the given boundary (left)
would invalidate it (right). Bottom: given the enlarged boundary (left)
the growth expansion is now valid (right)

Note that this method is essentially equivalent to
traversing triangles, which seems to be the obvious
choice. But, as we will show further below, the vertex
based formulation has advantages when optimizing the
triangle patch for valences (Section IV-D), as well as
for meshing curves with a fixed number of vertices
(Section V), which is why we use it homogeneously
throughout the algorithm. Due to the symmetry of the
triangle grid, the number of different cases of expanding
the boundary by a valid adjacent point can be reduced
to five. These cases are illustrated in Figure 8.

In our setting of 3D modeling, narrow parts (described
in Section IV-A) can be problematic after boundary
growth has terminated. As noted earlier, if two boundary
vertices are connected by an edge that is not part of the
boundary, the resulting mesh will contain a nonmanifold
edge. Therefore, after boundary growth has terminated,
the boundary is tested for adjacent parts. Around all
parts found, boundary growth is continued for at least
one more step as shown in Figure 9.

4

Fig. 8. The five different cases for expanding a boundary by a valid
adjacent point.

4.3 Mapping boundary vertices to the sketched curve

After the boundary has been grown, the boundary
grid points need to be mapped onto the user sketch,
where they will serve as boundary conditions for sub-
sequent surface optimization. If the boundary is close
enough to the sketch, assigning each grid point to the
closest point on the user sketch seems most plausible
in order to minimize the distance of the boundary to
the sketched curve. This mapping is a bijection only
if the minimimum feature size of both curves is larger
than 2−

√
2 times the Hausdorff distance between them

[24]. While there is no guarantee that this condition is
satisfied, the resulting mapping is rarely not a bijection
in practice, and the bijectivity is easy to check: the order
of grid points along the boundary needs to be preserved.
If we find grid points to be projected out of sequence
we reassign them based on arc-length parameterization.

The number of grid points on the boundary is gen-
erally smaller than the number of vertices in the user
sketch. To preserve significant features of the user
sketch, such as a sharp tip, we identify these and
ensure that grid points are identified with them. We
consider features to be local maxima of curvature. The
integrated curvature of a PWL curve can be defined as
κ = 2 sin θ2 [25] , where θ is the turning angle between
two adjacent curve segments. For a pointwise measure,
κ needs to be adjusted according to the length of the
segments incident on the vertex.

Fig. 9. Distinctive parts of the boundary on the left are adjacent (white
vertices). Around this narrow area, boundary growth is continued.

From the vertices with curvature above a certain
threshold, we identify maxima of pointwise curvature
as significant features and order them according to their
magnitude. We then take the feature points from this
list as long as free boundary grid points are available
and associate the closest grid point with the feature
(Figure 10), unless the distance between vertex and
grid point exceeds the length of a triangle edge. The
remaining grid points are treated as explained above.

This mapping procedure is carried out before bound-
ary optimization (see next section), since the optimiza-
tion expands the boundary further, thereby moving it
further from the user sketch. The mapping, however,
must be performed when the boundary is close to the
user sketch.

Fig. 10. Different mappings of boundary grid points to the user
sketch. Top row: orthogonal projection onto the curve. Lower picture:
orthogonal projection followed by snapping to feature points of the
original curve.

4.4 Valence optimization

After the boundary has been grown, we have ac-
quired a certain resemblance of the original user sketch.
However the boundary is likely to be quite irregular,
potentially containing the invalid cases described in
Section III-B.

Therefore we grow the boundary further, in order
to eliminate edges connecting boundary vertices (the
cases illustrated in Figures 5 and 9) and to reduce
the number of direction changes. This process may
decrease the geometric proximity to the target curve,
thus, the algorithm presented in the following provides
the possibility to weigh the relevance of these two
properties.

The optimization process grows the boundary further
with different rules for the selection of expansion points
and termination. In a first phase, edges connecting two
boundary vertices (which are not part of the boundary)
are eliminated by adding additional triangles. Note that

5

the case of boundary vertices with valence 2 is unlikely,
as the growth process is steered to avoid them. Nev-
ertheless, remaining cases can be eliminated by adding
a single triangle. When the boundary comes close to
itself, the patch is grown on both sides of the boundary
(Figure 9).

In a second phase, the number of direction changes
along the boundary is reduced in order to improve the
regularity of the resulting mesh along the boundary. It
is checked if boundary expansion by a valid adjacent
point decreases the total number of direction changes.
For this we introduce the dirDiff function that measures
the degree of a direction change along three boundary
vertices as shown in Figure 11. Accordingly we can
define an error function errdc, that measures the number
of direction changes along the boundary as follows:

errdc(B) =
∑
p∈B

dirDiff(prev(p), p, next(p)) (1)

where B is the boundary, and the functions prev and
next return the predecessor and the successor of a point
in B.

0

1

2

Fig. 11. The dirDiff function measures the degree of direction change
along 3 boundary vertices. If no direction change occurs, the function
returns 0, otherwise the number of turns is returned (1 or 2).

Using the function errdc, we can easily determine
if adding a point p to the boundary would result in
a boundary with fewer direction changes. We only
expand the boundary B by a valid adjacent point p
if the resulting boundary B′ has a decreased number
of direction changes, i.e. errdc(B′) < errdc(B). We
can also allow errdc(B′) ≤ errdc(B), if we want to
favor more triangles inside the boundary. This eliminates
valence 6 vertices on the boundary (case 4 in Figure 4
with v3D = 10), by removing the center vertex 2 and
connecting vertices 1 and 3. Another example for an
expansion that improves boundary straightness is given
in Figure 12.

Growing the boundary terminates when no more de-
crease of errdc can be achieved. For a convex boundary,
this is the case when errdc(B) = 6. However, for
highly non-convex user-sketches, this optimal solution
is likely to lack any resemblance to the sketch (the

errdc= 0

dirDiff = 0
dirDiff = 0

dirDiff = 0dirDiff = 1

dirDiff = 1
dirDiff = 1

errdc= 4

dirDiff = 1

Fig. 12. The valid adjacent vertex marked white is a candidate for
expansion. The original boundary (left) has 4 direction changes, while
the new boundary has none.

A

B
p1

p2 p3

p4

Fig. 13. Overcoming local minima of errdc. See the text for details.

example in Figure 1 shows a non-convex user sketch
where errdc(B) = 6 can be achieved while staying close
to the sketch). Therefore, as an additional constraint, we
only allow expansion within a maximum distance from
the user sketch. By adjusting the maximum distance, we
are able to balance the boundary straightness against its
similarity to the user sketch. A small value will lead to
boundaries that are very similar to the user sketch, while
a higher value will generate an optimal solution in terms
of direction changes.

There is still a special case left that needs to be
treated: due to the stepwise boundary expansion, the
algorithm is not able to overcome a local minimum of
errdc. Figure 13 illustrates this: for the current boundary
A, errdc(A) is lower than errdc(B). Accordingly, the
algorithm will not grow the boundary around the vertex
marked white, because no local optimization can be ac-
complished, even though growing to the final boundary
C would result in an optimal boundary w.r.t. errdc.
This case can easily be identified by searching for a
specific pattern of direction changes along the boundary
(Figure 13, right): we need to search for a convex vertex
(p1), followed by a concave vertex (p2), followed by
convex vertex (p3). Between these vertices, an arbitrary
number of vertices with no direction change may occur.
The boundary needs to be grown to point p4 in order
to reach the global minimum of errdc, a case which
can be easily detected. Note though that the boundary
is only expanded if the distance of p4 to the user sketch
is smaller than the maximum distance.

The position of boundary points added during opti-
mization on the sketched curve cannot be determined
by closest point matching as described in Section IV-C,
since we are moving further away from the sketched
curve. Therefore, we compute the mapping of boundary
points added during optimization by arc length param-
eterization from adjacent, unmodified points mapped
previously (Section IV-C).

5. MESHING A CUT OR A HOLE

Figure 2 shows the steps of filling a hole in the mesh
after a cut operation. In general, the process of cutting
is similar to that of the initial meshing. However some
requirements and constraints differ. In contrast to the
initial stroke, the cut stroke generally does not lie on a
plane. Since the cut curve always lies on a developable
(ruled) surface, we can compute an isometric, planar
mapping by simply ”unrolling” the curve onto a plane.
Furthermore, the number of boundary vertices on the
triangle grid is fixed, since the patch needs to be attached
to the cut stroke residing on the mesh.

6

Once we have obtained a planar version of the cut
stroke, the meshing process can be handled similarly to
the initial meshing process described in section IV with
some modified constraints.

The patch cut out of the grid has to be attached to
the cut stroke by merging the boundary vertices and
the cut stroke vertices. Note that there exist various
boundaries of the same length that enclose a different
number of triangles, see Figure 14. To ensure a smooth
approximation of the hole, we attempt to maximize
the area enclosed by the boundary while preserving its
prescribed length.

6 8 10

Fig. 14. Three boundaries with the same length of 8 vertices, each
enclosing a different number triangles.

Given these constraints, we adapt the meshing al-
gorithm as described in the following. The queue for
boundary expansion is prioritized; candidates for expan-
sion are ordered by their distance to the cut/hole curve.
Grid points inside and far away from the curve receive
the highest priority. For points outside the curve the
priority is lowest and decreases further, as their distance
to the curve increases.

Once again, the five different cases of boundary
expansion are shown in Figure 8. The boundary length
only increases in the first case. In all other cases,
the boundary length remains the same or decreases. It
is therefore guaranteed that the target length will be
reached, since in every step of growth the length can
increase at most by one. We make use of the fact that the
last three cases of growing decrease the boundary length,
in order to maximize the enclosed area, and achieve a
more pleasing approximation of the cut surface.

Boundary expansion is performed until the target
length is reached. At this point the boundary is expanded
by all valid adjacent points that decrease the boundary
length again (growing cases three, four and five) and
lie within a predefined maximum distance to the curve.
In our implementation a maximum distance of two edge
lengths of the triangle grid represent a good compromise
between proper resemblance and more triangles. If the
boundary length was successfully decreased, expansion
continues until the target length is reached again.

6. RESULTS

In the following we present some results of our mesh
generation algorithm. All figures have been taken using
our FiberMesh implementation. We show the final mesh
together with the curve sketched by the user, the triangle
grid, and a wireframe view. On the triangle grid, all
points visited during growth are marked dark gray. The
final boundary is black. Grid points that have been added
during boundary optimization are marked light gray. The

Fig. 15. A shape with many concavities along the silhouette.

Fig. 16. Comparison with the previous meshing routines of Fiber-
Mesh (left: FiberMesh algorithm, right: our algorithm)

center point enclosed by the initial boundary is marked
white. Figure 15 shows a complex shape with many
concavities along the silhouette.

In Figure 16 the results of the previous prototype
implementation of FiberMesh are compared to our al-
gorithm. Both meshing algorithms were initialized with
exactly the same sketched curve. It can clearly be seen
that the previous approach results in more irregular mesh
vertices, not only on the boundary but also in its vicinity.

Figure 17 shows a simple flat cut with the correspond-
ing patch that was cut out of the triangle grid, while
Figure 18 demonstrates the robustness of this method in
the FiberMesh test case.

7. DISCUSSION

We have presented an algorithm for meshing closed
sketched curves using a triangle grid. Various properties
of the resulting mesh can be easily influenced through
different parameters: the number of triangles can be
adjusted via the resolution of the triangle grid, and we
have introduced a trade-off between geometric accuracy
and mesh regularity.

We believe that this way of meshing a curve is intu-
itive and still provides various possibilities for further

7

Fig. 17. Simple flat cut

Fig. 18. Cuts inspired by modern sculpture.

improvements and new features. The algorithm could
for example be extended in order to determine the best
grid orientation for a given curve. Currently the results
can vary significantly depending on the orientation of the
curve relative to the grid. Even though the quality of the
current results is good enough for our requirements, this
behavior is clearly undesirable and exposes a possibility
to increase the number of regular mesh vertices, and
improve their locations on the silhouette.

The algorithm is furthermore adapted for a set of
different constraints. It is possible to influence the num-
ber of triangles being cut out. This way of remeshing
parts of an existing mesh is not only interesting for the
FiberMesh application or similar sketch based interfaces
using cut operations. It can also be applied to general
meshes that need to be remeshed along an enclosed
area. The cut stroke required for the algorithm can be
obtained by defining a closed path along the mesh’s
vertices, which encloses the area in need of remeshing.
However, the geometry of the inner vertices still needs
to be computed if the algorithm is used outside the
FiberMesh environment.

We believe that our algorithm provides a fast, robust
and general method for meshing closed curves, including
curves with a fixed number of vertices. Growing a
boundary and optimizing it w.r.t. valences is fast, robust,
easy to implement, and can easily be modified to meet
other constraints and requirements.

REFERENCES

[1] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa.
FiberMesh: Designing freeform surfaces with 3d curves. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH),
26(3), 2007. article No. 41.

[2] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy:
A sketching interface for 3D freeform design. In ACM SIG-
GRAPH, pages 409–416, 1999.

[3] Takeo Igarashi and John F. Hughes. Smooth meshes for sketch-
based freeform modeling. In ACM Symposium on Interactive 3D
Graphics, pages 139–142, 2003.

[4] Olga A. Karpenko and John F. Hughes. SmoothSketch: 3D
free-form shapes from complex sketches. ACM Trans. Graph.,
25(3):589–598, 2006.

[5] Levent Burak Kara and Kenji Shimada. Sketch-based 3D shape
creation for industrial styling design. IEEE Computer Graphics
and Applications, 27(1):60–71, 2007.

[6] Marko Lamot and Borut Zalik. An overview of triangulation
algorithms for simple polygons. In International Conference on
Information Visualisation IV, pages 153–159, 1999.

[7] N. J. Lennes. Theorems on the simple finite polygon and
polyhedron. Am. J. Math., 33:37–62, 1911.

[8] G.H. Meisters. Polygons have ears. Amer. Math., 82:648–651,
1975.

[9] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan.
Triangulating a simple polygon. IPL: Information Processing
Letters, 7:175–179, 1978.

[10] Bernard Chazelle. A theorem on polygon cutting with applica-
tions. In FOCS: IEEE Symposium on Foundations of Computer
Science (FOCS), pages 339–349, 1982.

[11] David G. Kirkpatrick, Maria M. Klawe, and Robert Endre Tarjan.
Polygon triangulation in O(n log log n) time with simple data
structures. Discrete & Computational Geometry, 7:329–346,
1992.

[12] Raimund Seidel. A simple and fast incremental randomized
algorithm for computing trapezoidal decompositions and for tri-
angulating polygons. Computational Geometry, 1:51–64, 1991.

[13] B. A. Lewis and J. S. Robinson. Triangulation of planar regions
with applications. Computer Journal, 21:324–332, November
1978.

[14] L. de Floriani and E. Puppo. An on-line algorithm for con-
strained delaunay triangulation. Graphical Models and Image
Processing, 54(4):290–300, July 1992.

[15] Jonathan Richard Shewchuk. Triangle: Engineering a 2d quality
mesh generator and delaunay triangulator. In FCRC ’96/WACG
’96: Selected papers from the Workshop on Applied Computa-
tional Geormetry, Towards Geometric Engineering, pages 203–
222, 1996.

[16] P. Chew. Guaranteed-quality triangular meshes. Technical Report
89-893, Cornell University, Computer Science, 1989.

[17] Jim Ruppert. A delaunay refinement algorithm for quality 2-
dimensional mesh generation. Journal of Algorithms, 18(3):548–
585, 1995.

[18] Brenda S. Baker, Eric Grosse, and Conor S. Rafferty. Nonobtuse
triangulation of polygons. Discrete Comput. Geom., 3(2):147–
168, 1988.

[19] Marshall Bern and David Eppstein. Mesh generation and optimal
triangulation. Technical Report P92-00047, Xerox PARC, 1992.

[20] Marshall Bern, Scott Mitchell, and Jim Ruppert. Linear-size
nonobtuse triangulation of polygons. In SCG ’94: Proceedings of
the tenth annual symposium on Computational geometry, pages
221–230, 1994.

[21] François Labelle and Jonathan Richard Shewchuk. Isosurface
stuffing: fast tetrahedral meshes with good dihedral angles. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, page 57, 2007.

[22] Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao,
Baining Guo, and Heung-Yeung Shum. Large mesh deformation
using the volumetric graph laplacian. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers, pages 496–503, 2005.

[23] Yanlin Weng, Weiwei Xu, Yanchen Wu, Kun Zhou, and Baining
Guo. 2d shape deformation using nonlinear least squares
optimization. Vis. Comput., 22(9):653–660, 2006.

[24] Frédéric Chazal, André Lieutier, and Jarek Rossignac:.
Projection-homeomorphic surfaces. In SPM ’05: Proceedings
of the 2005 ACM symposium on Solid and physical modeling,
pages 9–14, 2005.

[25] Eitan Grinspun, Mathieu Desbrun, Konrad Polthier, Peter
Schröder, and Ari Stern. Discrete differential geometry:
An applied introduction. SIGGRAPH 2006 Course Notes,
http://ddg.cs.columbia.edu, 2006.

8

