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Abstract—Agents now exist that can play Texas Hold’em Poker
at a very high level, and simplified versions of the game have
been solved. However, this does not directly translate to learning
heuristics humans can use to play the game. We address the
problem of learning chains of human-learnable heuristics for
playing heads-up limit Texas Hold’em, focusing on the post-flop
stages of the game. By restricting the policy space to fast and
frugal trees, which are sequences of if-then-else rules, we can
learn such heuristics using several methods including genetic
programming. This work builds on our previous work on learning
such heuristic rule set for Blackjack and pre-flop Texas Hold’em,
but introduces a richer language for heuristics.

I. INTRODUCTION

If you were teaching someone to play Poker, but could only
tell them a single rule for how to play, what would that rule be?
That you should raise if you have a pair but fold otherwise?
Now, if you could also tell them a second rule, what would
that be?

Every journey starts with a first step and learning a complex
skill starts with learning a simple part of that skill. Learning to
drive a car usually starts with learning to shift gears, or in the
US, to find the brake. This is no different in games. Playing
Super Mario Bros, you will first learn to move sideways, then
to jump over enemies, then to jump on top of enemies, bump
into question mark blocks, shoot fireballs etc. Much later in the
game you will learn complex combinations of these such as
wall-jumping or finding secret passages. Every simple thing
you learn makes you play the game better. These units of
learning have been called “skill atoms” or “heuristics”; in this
paper, we’ll use the latter.

Being able to automatically subdivide a complex skill into
heuristics would be very useful for being able to automatically
(or semi-automatically) generate instructional sequences or
tutorials for that skill. Given that we know what heuristics
must be learned, and in what order, the task of figuring out
how to teach those heuristics becomes much easier. But finding
the heuristics necessary for a task is important for at least one
other reason as well: to gauge the depth of the task. Deep tasks,
for example deep games, are characterized by that mastering
them requires learning a long chain of heuristics that build on
each other. This can be contrasted with shallow tasks/games
where there are only a small number of effective heuristics
available, or there is a large number but they cannot be used
together. Automatically finding the heuristics can therefore
also help us estimate the depth of the task.

In this paper, we investigate methods for finding heuristics
for post-flop heads-up limit Texas Hold’em Poker. This is one
of the simplest versions of Poker available (chosen because
it is somewhat tractable) and we are only tackling the later
stages of the game. This follows on from our earlier work on
finding heuristics for Blackjack and for the pre-flop phase of
the same type of Poker. The basic idea is to use and search
in the space of heuristic chains, and evaluate them by playing
against a strong adversary.

Like in our previous work, we apply and compare greedy
exhaustive search, axis-aligned search, and genetic program-
ming, and represent heuristics in a domain-specific language
meant to be able to express human-learnable rules. A major
contribution in this paper with respect to our previous work
is a richer language for the heuristics, able to capture late-
game aspects of Poker. Other novel contributions include
our approach to finding initial positions for the gameplay
simulations, and our table-based reduced adversarial agent
which allows fast simulation.

In the next section we describe previous work on heuristics,
genetic programming, Poker AI and other topics. We then
describe the particular Poker variant we are addressing, and the
adversarial agent we employ. Next, we describe the heuristic
language that we developed for post-flop Poker, and the details
of the algorithmic approaches. In the results section, we
perform comparative analysis of the quality of heuristics found
through the different approaches and plot curves of policy
strength relative the the length of the heuristic chain, as well
as show examples of particular heuristics found.

II. BACKGROUND

When making decisions, novices are not the only ones that
use simple models. The theory of bounded rationality claims
that the human decision making process is a factor of the
amount of time available to make a decision and the amount
of information available [1], [2]. Opting for simple rules-of-
thumb can provide better outcome when compared to using
complex algorithms because they are less prone to errors in
the execution [3].

Agents that target optimum play have been able to show
impressive results, in some cases being able to compete or
surpass professional human players. Approaches for Check-
ers [4], Chess [5], Go [6], Othello [7] and Poker [8] are some
of the examples of such agents. Unfortunately, most of these



solutions require large memory space or heavy computation
that are unfeasible to be executed by human players. In order
to create powerful strategies, players use heuristics to approxi-
mate the evaluation of a complex scenario. Our paper contrasts
with approaches that look to maximize quality of the solution
in that we constrain our heuristics to be simple to understand
and execute, being careful to analyze the relationship between
quality and complexity. Furthermore, we target novice players
who would have been just introduced into the game.

Evolutionary approaches have also been successful at gener-
ating high performance agents. Players have been evolved for
adversarial games such as Poker [9], Backgammon [10] and
Lose Checkers [11]. Evolutionarhy approaches for developing
strategies have also been applied to a clone of Super Mario
Bros where neural nets were evolved to create controllers that
play the game [12], to the solo variant of Pong [13], and to
evolve controllers that exhibit general driving skills [14].

Good game-playing in poker has many different aspects to
it. Bluffing, reading your opponent and calculating the risks
involved in the betting are essential for high skill play [15],
[16], [17]. Another important aspect of the game are what is
called mixed strategies. With a mixed strategy, when observing
the same game state, action A is played with probability X and
action B with probability Y, as opposed to a deterministic de-
cision. The heuristics generated in this paper are deterministic,
resembling rules-of-thumb, which are known to only have a
reasonable performance at the beginner level [17]. That don’t
pose a problem to us since beginner players are exactly the
ones we wish to target with our heuristics.

The work on this paper follows our previous work on
generating simple heuristics for Blackjack [18] and for the
Pre-Flop round of Heads-Up Limit Texas Hold’em [19]. Using
Blackjack we were able to show that it is possible to generate
these heuristics and by evaluating their performance versus
their complexity we approximated the skill chain [20] of the
game. Blackjack was a good first step since it is a 1.5 player
game, the opponent is the dealer that always plays following
a known deterministic algorithm. In the Pre-Flop round paper,
we showed that the same algorithms were indeed capable
of generating simple heuristics on a 2-player game. In a
multiplayer game your opponents are able to react and reshape
their strategies during gameplay to adapt to yours, that brings
the question of whether the heuristics we generated were
subjected to a intransitivity relationship, meaning heuristic
A beats heuristic B, heuristic B beats heuristic C, but C is
able to beat A. We showed that there was in fact intransitvity
between our heuristics. In this work we expand the analysis to
the Post-Flop rounds of Poker, which has a richer vocabulary
due to more information being available in the game state.
Furthermore, we propose how a player with knowledge of the
heuristics of all rounds could be able to use those to play a
complete match of Heads-Up Limit Texas Hold’em.

III. HEADS UP LIMIT TEXAS HOLD’EM POKER

Poker is a popular gambling card game. Having many
variants and being played all around the world, whether it

be online, casually at casinos or at a professional level. One
of the most popular variations of Poker is Texas Hold’em. In
this work, we will discuss how to generate novice-level simple
heuristics for playing this variant of the game.

In Texas Hold’em, 2 or more players bet over multiple
rounds on the best 5 card poker hand they can make out
of the cards in play. The game has stochastic elements, with
cards being distributed from a randomly shuffled deck, hidden
information with the players holding cards in secret from each
other, and as gameplay progresses more information is added,
with cards that are shared by all players being revealed and
actions being made. Strategies in the game usually involve
bluffing, reading your opponents and assessing the risks of
performing each action. Good strategies tend to have a lot of
moving parts that are usually overwhelming for beginners.

A match of Texas Hold’em has 4 card rounds (in this
respective order): Pre-Flop, Flop, Turn and River. Each of
these rounds consists of card dealing followed by betting. In
the Pre-Flop round, players are each dealt 2 cards they keep in
their hand, secret from the others. In the Flop round, 3 cards
are dealt face-up on the table, these are cards that are shared
between all players. In both the Turn and River 1 more card
is dealt to the pool of shared cards, totaling 5 face-up cards
at the end. After the last round of betting, if there is more
than 1 player still in the match, the showdown happens. In the
showdown, the players remaining form the best 5 card poker
hand they can from a total of 7 cards, their 2 cards from the
Pre-Flop and the 5 cards face-up on the table. The player with
the most valuable hand, following the standard hand ranking
comparison, wins the total pot. On this paper, we focus on
generating heuristics for playing the betting rounds in the Flop,
the Turn and the River, following our previous work on the
Pre-Flop round [19].

During betting, players alternate turns choosing to take 1
of the 3 possible actions. The action Fold has the player
discarding their hand and being out of the game until the end
of the match, meaning that player will not participate in the
showdown. The Check/Call action has the player matching
the largest bid made by another player so far. When using
the action Raise players increase the highest bet to this point,
turning them into the highest bidder. Once play comes back
to the last player to have Raised, if there are multiple players
remaining, the betting round ends and the match proceeds to
the next round.

For the scope of this work we will be using the variant
Heads-Up Limit Texas Hold’em. Heads-Up means that the
matches are played by only 2 players. The variant Limit
means that every time players Raise they can only do it by
a fixed amount. Furthermore, we utilize the same settings as
the Annual Computer Poker Competition for Heads-Up Limit:
Only a total of 3 Raises can happen at Pre-Flop and 4 in the
other rounds. After the limit of Raises has been met, the player
has to choose a different action.

The decision to use this variant of Poker is to have a simpler
game to build our analysis on, and still have significant result,
considering that a lot of the principles behind good heuristics
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Fig. 1. Structure of a Fast and Frugal Tree (FFT). In this binary tree, each
node in blue represents a condition and each node in yellow represents an
action. When a condition is satisfied, the FFT returns the left child of that
condition, otherwise it proceeds to next condition or, if it reached the end,
returns the default action.

in Heads Up Limit Texas Hold’em can be used to play other
variants. Those are some of the reasons why this specific
variant has been the focus of a lot of research, culminating
in an agent that weakly solved this game [21].

IV. HEURISTIC STRUCTURE

Since we are looking to generate heuristics that are simple
and effective, we need a proper representation. Commonly
used in bounded rationality theory, Fast and Frugal Tree
(FFT) is a type of binary search tree. In FFTs, nodes that
have children represent conditions that inform decisions, while
the leaves represent the action to be executed following the
parent’s outcome. Figure 1 shows the structure of FFTs. In
order to make a decision we start at the condition in the
root. If that condition is satisfied, we return the action on
the left child of this node. If that condition fails, we proceed
to the right child condition node. In case there are no more
conditions to be tested, the default action (right child of the
condition node of highest depth) will be returned. FFTs can
also be expressed as decision lists [22], [23] and commonly
have a higher performance, in practice, when compared to
more complex algorithms [24].

Throughout the following sections of this paper we will
represent FFTs as a chain of if-then-else statements. Their
structure is as follows:

if CONDITION 1 then ACTION 1
else if CONDITION 2 then ACTION 2
else if ... then ...
else DEFAULT ACTION

We will refer to the grouping of a condition and the
action resulting from successfully meeting such condition as
statement. Each condition is formed by one or more boolean
tests, called clause, that satisfy the condition when, and only
when, are all evaluated to true. This means that a condition is
formed by a conjunction of clauses. Lastly, the action returned
by reaching the else statement is therefore the default action.

A. Poker Clauses
In order to generate heuristics, we first need to define a

vocabulary to express them. The vocabulary is the basis of
all heuristics, and determines what kind of information about
the game state can be used. It is composed of several boolean
functions that can be called as clauses for a condition.

When comparing to our previous work on generating heuris-
tics for the Pre-Flop round of Heads-Up Limit Texas Hold’em,
one of the main differences is the vocabulary being used. Since
during the Pre-Flop players only have access to their two cards,
a consequence is that the clauses rely heavily on those. For
the rounds after, we no longer address the two cards in hand
specifically, but rather the game it is forming together with the
shared face-up cards. The only aspect of the game state that
is common across all rounds is the size of the pot.

The vocabulary used in this work was built following
common points of analysis discussed by players and frequently
analyzed in books about Poker, such as Play Poker Like the
Pros [15] and The Mathematics of Poker [16].

In the remainder of this section we describe the different
boolean functions and clauses used to generate the heuristics.

1) Hand Rank: We define Hand Rank as the value the
current player hand would have at the showdown. Since
there is an order for the quality of different hands, it is
possible to make statements such as: FullHouse > Pair
and Flush < FourOfAKind. Given such, we analyze
Hand Rank in the interval: HighestCard ≤ HandRank ≤
RoyalStraightF lush. It is worth noting that this does not
take into account the value of the highest card in the hand,
used to break ties between hands with the same Hand Rank.
For such, we have another boolean function.

2) Highest Valued Card in Hand: When there is a tie
between 2 hands of the same Hand Rank, the value of the
highest card that composes that hand is used to break ties.
For hands of ThreeOfAKind or higher it is not uncommon
to play them through even when the value of the card used
to form it is low. That is not the case for the lower ranks
though. Considering that the bottom 3 Hand Ranks happen
more often then all others, testing the value of the tie breaker
is due necessary. Given the range of cards, the interval that
can be analyzed in a clause is: 2 ≤ x ≤ 14.

3) Total Pot: The size of the pot is important when playing
the game since it represents the rewards for winning that
match. In the heuristics we show, we represent Total Pot in
relation to how many Big Blinds it represents. So, a test such
as TotalPot ≥ 30 is true when the pot is equal or greater
than 30 Big Blinds. In Poker, Big Blind refers to the amount
the last player to act in the Pre-Flop is forced to bet in the
beginning of the game, to account for their favorable position.

4) Aggressive Opponent: Evaluating the behavior of the
opponent can give valuable information about how a player
is to proceed with their actions. Since building and analyzing
a model for the adversary is beyond the scope of this paper,
we have a simplified but significant representation. We add to
the vocabulary 2 boolean functions: IsOpponentAggressive
and NotIsOpponentAggressive. The first is satisfied when



the last move the opponent made was Raise. The second just
returns the inverse of the first’ result.

5) Texture of the Board: By observing the face-up cards
present in the board, we can analyze their texture. Texture of
the Board indicates whether the shared cards shown make it
likely or unlikely for players to build a good hand. For such,
we create IsBoardDry, that is satisfied when the board is dry
(unlikely to form good hands with) and IsBoardWet which
represents the opposite.

6) Outs: A very common and powerful strategy in Texas
Hold’em is to be aware of the number of outs you have. The
number of outs represents the number of cards left in the deck
that if drawn to the board at later stages can improve your
Hand Rank from what it currently is. We count the number
of cards to turn Pairs into Three of a Kind, number of cards
that can turn a 2 pair into a Full House and number of cards
that can complete the a Flush or Straight missing 1 card. This
function is not used for the River round, since no more cards
will be added to the board.

V. OPPONENT AGENT

In order to find good simple heuristics, we need to search the
space of possible FFTs and evaluate their quality. To estimate
the quality of a heuristic, which we will call fitness for this
point on, we rely on playing a substantial amount of games
and evaluating the average outcome.

Since Heads-Up Limit Texas Hold’em is a 2-player game,
the fitness is calculated in relation to playing the different
heuristics against the same opponent. In order for it to be
feasible to play enough games in a short amount of time, we
require an automated agent to play against.

For our work on Pre-flop, we were able to use the table that
is part of the Nash Equilibrium used to solve the game [21].
For the post-flop rounds this table would be too large, and we
don’t require optimal play. Therefore we resort to a method
similar to the one used to weakly solve the game. Another
caveat is the time it takes for the agent to be trained. These
motivate using the same methods, but under a simplified
strategy, while making it more vulnerable.

The Opponent Agent we created is inspired by the work
done towards building competitive AI for Heads-Up Limit
Texas Hold’em [25], [26], [27] and the agent that was able
to weakly solve the game [21].

This agent is built using the Counterfactual Regret Min-
imization (CFR) algorithm. The agent, as opposed to our
heuristics which are deterministic, plays a mixed-strategy,
meaning that depending on the game state it has different
probabilities of making moves X, Y or Z. By starting from an
equal probability for making any of the 3 moves, the algorithm
then plays against itself and updates its probabilities based on
the amount of regret of having performed each action. With
the regret values, it updates the probabilities in relation to
their positive regret (how much better it would have done if it
picked another action). The algorithm has to be trained over
an expressive amount of runs, relative to the size of the space
that is being represented.

Since computing individual probabilities for each possible
card combination is beyond the scope of this work (and tackled
in Bowling et al. [21] and Tammelin et al. [28]), we opt to use
a very simple card representation abstraction. For every 1 of
the possible 57,344 sequences of actions, the agent classifies
their Hand Rank, dividing hands of different rank into different
buckets. This creates a probability distribution that reflect
knowledge of the game and that is feasible to be trained in
a small amount of time. That said, the agent has very small
granularity, meaning it is vulnerable to being exploited. But,
since it represents a more general play, it is unlikely to bias
the heuristics generated against it. Our agent was trained using
30 cores for 7 hours, having played over 5.5 billion matches.

VI. ALGORITHMS

Once we have an Opponent Agent, we can define our Fitness
function. Such will be the average amount of money earned
from playing against the agent for 400,000 matches. And the
end of every match we reset each players pot and we guarantee
that our heuristic will be first player through half the matches
and second player for the others. Subjects with higher fitness
are ranked higher in the algorithms.

We now introduce the algorithms we use to generate simple
heuristics. Increasing the fitness usually reflects in an increase
in complexity. So, in order to form a diverse population and
be able to approximate the skill chain [20], we target creating
heuristics of growing complexities, such as we did with the
game Blackjack [18].

Since we are generating heuristics for the different rounds
in the game, we run the algorithms separately for each case.
Since the game develops over previous rounds, to avoid bias,
we have the Opponent Agent play against itself until it reaches
the start of the round we want to generate heuristics for. From
there, we have the game be played by the heuristic until the
end of the current round. Once the round is over, we deal
out any cards that haven’t been dealt yet, as if there was no
more betting rounds in the game. After such, we proceed to
the showdown to decide the outcome of this match. Once we
generate heuristics for each stage of the game we will analyze
how we can use these to create a strategy for playing a match
from start to finish, using only heuristics found.

A. Greedy Exhaustive Search

With this algorithm, we start by initializing the population
with all possible FFTs that are composed by a single condition
with a single clause. They are created by assigning the boolean
functions to clauses using all possible values in range and also
varying all actions to be any of the 3 possible.

We proceed to evaluating the fitness of all individuals in the
population, and the one with highest fitness is then the best
1-statement FFT possible. If we desire to have an individual
with more statements, we repeat the process of generating all
1-statement possibilities and appending these to the end of the
heuristic found on the previous step.

Since as the number of statements grow the amount of
possible FFT we can build increases exponentially, it is



unfeasible to exhaustively explore all possible heuristics with
more than 1-statement. Even by just allowing for a statement
to have more than 1 clause, the space of possible heuristics
grows exponentially. As a consequence, the algorithm is very
prone to finding local maximum as opposed to approaching
the global optimum. Even with these caveats, it is still useful
for finding the heuristics with the least amount of complexity.

B. Axis-Aligned Search

Since the space of possible heuristics is very large, per-
forming a search for quality heuristics is computationally
expensive. To avoid such, we created the Axis-Aligned search.

The method is inspired by computer graphics techniques,
in particular line search, and it targets optimizing individual
dimensions, one at a time, rather than the whole. The algorithm
starts from a randomly generated heuristic. Then it creates a
copy of the FFT, for each clause and action in the heuristic,
changing only the value being compared in a clause or which
action is returned. A copy is created for every possible value
that can be tested for every possible clause. Copies are also
created for every action. We now have a population of all
these small variants of the original heuristic. We calculate
the fitness for all of individuals and find the one with the
highest value. The most fit now becomes the main subject. We
then repeat the process, now varying all clauses and actions,
except that we lock the clause/action that was changed from
further mutating for the rest of the iterations. We continue with
iterations until all clauses and actions are locked, or when the
most fit individual of an iteration is the initial subject.

The quality of the results of running this method are very
reliant on the random heuristic generated at the beginning.
That said, Axis-Aligned Search runs much faster than the
Genetic Algorithm, so we can have multiple runs and pick the
most fit individual out of all of them. The algorithm can also
be used to optimize the results found through other methods,
by seeding a generated heuristic to the first iteration, instead
of randomly creating one.

C. Genetic Programming

The most robust and the one most successful method at
finding close to optimum heuristics for different complexities.
Usually the best heuristics found come from using Genetic
Programming [29], [30], [31] to search the space.

The algorithm starts with a population of 100 FFTs, of
a fixed number of statements, generated at random. Then,
a generation is executed by evaluating the fitness of all
individuals of the population. The top 50, the elite, are selected
to move to the next generation. The bottom 50 are discarded.
New individuals are generated: 20 by mutating copies of elite
individuals, 30 by randomly crossing over copies of the elite
and then mutating the children. By maintain the top half of
the population we assure that poor performing genomes do
not propagate, while keeping the population diverse through
having a large size for the elite and performing mutation and
crossover. The algorithm performs 100 generations.

if HandRank ≥ Pair then RAISE
else CHECK/CALL

Fig. 2. Most fit least complex heuristic for Flop round. Found by Exhaustive
Search, fitness is approximately 0.89.

When mutating a heuristic, the algorithm visits every clause,
every constant in a clause and every action and mutates it with
a 30% probability. When a clause is mutated, it is replaced
with an entirely new one. When a constant is mutated, it
is replace with a new constant that falls within the interval
accepted by that clause. When an action is mutated, one of the
other 2 actions substitutes it. Heuristics that return the same
action for both evaluations of the last condition and heuristics
that have a condition that always evaluates to the same value
are not accepted into the population, neither are duplicates of
other heuristics already in the population, and the mutation is
repeated until a valid individual is created.

When crossing over 2 heuristics, a random condition or
action is selected and it crosses over with the condition or
action at the same depth/position in the other FFT. As it is
with the mutation, with crossover creates a invalid individual
or a copy of an individual already in the population, the step
is repeated until a pair of valid children are returned.

Despite being the best at finding close to optimum indi-
viduals, the genetic algorithm is the most computationally
expensive being roughly 25 times longer than 1 run of Axis-
Aligned Search. As it is going to be discussed in the next
section, the Genetic Algorithm found the majority of the most
fit individuals we have for each complexity.

VII. RESULTS

In this section we showcase the results of running the
algorithms described previously to generate simple heuristics
for the Flop, Turn and River rounds of Heads-Up Limit Texas
Hold’em. For each round we demonstrate 2 heuristics: the
most fit of the lowest complexity and the most fit overall.

In order the evaluate the results found, we measure the
complexity of a heuristic. For the remainder of the paper,
complexity will refer to the sum of the number of clauses and
number of actions (including the default action) of a heuristic.
Although this evaluation does not take into account that some
clauses or statements might be harder than others to parse for
humans, it provides a good approximation of the amount of
information that is represented.

A. Flop

Figure 2 shows the lowest complexity most fit heuristic for
the Flop round. This heuristic raises if it is currently holding
a hand with a pair or higher and checks/calls otherwise. Since
the heuristic was trained in games that end after the Flop,
holding a pair at this stage of the game can be a powerful
hand, but one that can lose strength if play was to move past
this round. Since there are still 2 cards left to be dealt to the
board, a pair would beat other hands that have a higher reward



if HandRank ≥ Pair then RAISE
else if TotalPot ≤ 2 then RAISE
else if Outs ≥ 11 then RAISE
else CHECK/CALL

Fig. 3. Most fit heuristic for Flop round. It has a complexity of 7. Found by
Genetic Programming, fitness is approximately 1.28.

Fig. 4. Plot showcasing the relation between fitness and complexity for
the heuristics found for the Flop round. The Y-axis represents fitness and
X-axis represents complexity. Each dot represents 1 heuristic. The red line
is an approximation of the skill chain found from the heuristics generated.
Heuristics found with fitness bellow 0.8 were omitted from the graph.

expectation in the long run, such as a hand that is 1 card away
from making a Flush.

The fact that this heuristic has a positive fitness (as we will
observe for the other heuristics shown for Flop and River)
indicates that it beat the opponent agent over time, but since
play is cut short and ladder betting is skipped, it cannot be
pointed as an indication that this heuristics dominates the
opponents strategy.

In contrast, Figure 3 demonstrates the most fit heuristic, of
complexity 7, found for the Flop round. The heuristic raises
on any hand that has a pair or higher. The second statement
represents a very specific scenario, the only sequence of
actions that reach the Flop with total pot being 2 or lower
is when all players have only checked/called in the Pre-Flop.
The third statement clause checks for a state that is very
advantageous to the player. If the player has 11 or more outs
during the Flop, considering that at this round the deck has 45
cards and 2 more cards will be added to the board, it means
that approximately 25% of the deck will improve the player’s
hand. Raising the pot is a strong action in these conditions.

One thing to notice is that both heuristics shown share the
same first statement. This means that it could be possible to
reach the best heuristic found by iterating on the best simplest
heuristic. However, it is unlikely that the Greedy Exhaustive
Search would have reached this result, specially considering
that the second statement covers a very small part of the space
of possible game states.

Figure 4 displays the relationship between fitness and com-

if HandRank ≥ TwoPair then RAISE
else CHECK/CALL

Fig. 5. Most fit least complex heuristic for Turn round. Found by Exhaustive
Search, fitness is approximately -0.61.

if HandRank ≤ HighestCard then CHECK/CALL
else if isBoardDry then RAISE
else if totalPot ≥ 31 then CHECK/CALL
else if HandRank ≤ Pair then CHECK/CALL
else RAISE

Fig. 6. Most fit heuristic for Turn round. It has a complexity of 9. Found by
Genetic Programming, fitness is approximately 0.56.

plexity for the heuristics we generated. We can observe a
fitness increase from complexity 3 through 7. While moving
from complexity 3 to 4 grants a small gain in fitness, the
greatest gain comes from reaching complexity 5. This can be
explained by observing that while heuristics of complexity 3
and 4 have 1 statement, the best of complexity 5 has 1 more.

It is also worth noting that the peak of the graph is present
on complexity 7, despite there being plenty of samples for
complexity 8 and 9. It is unlikely that there are no heuristics
of higher complexity that can outperform the current peak. It
is also easy to construct heuristics of higher complexity that
simply imitate the functionality of lower-complexity heuristics.
It is very likely that additional search time will allow to us
find heuristics with higher complexity of at least equivalent
fitness. We can extend this concept to explain the sharp drop
from complexity 10 to 11.

B. Turn

When observing the most fit simplest heuristic for the Turn,
showcased in Figure 5, we can notice a similarity with the
heuristic for the Flop. Changing from raise on pair or higher
to raise on two pair or higher models a more conservative
playstyle. Furthermore, it is noticeable that the fitness that
before was positive is now negative. It indicates the opponent
agent becomes harder to exploit further into the game.

The most fit heuristic for the Turn, represented on Figure
6, is the most granular of the ones detailed in this paper. The
first statement has the players checking/calling if they reach
the Turn and don’t even have a pair. Next, it evaluates if the
board is dry, and if so chooses to raise. This means it raises if
it is holding a pair or higher and the board is dry, which puts
the player in a position that seems advantageous. It proceeds to
check/call if the total pot is greater or equal to 31 Big Blinds,
which would indicate that the opponent has been constantly
investing in their hand. In the case that the pot isn’t as great,
and the board is wet, it chooses to be slightly conservative
and check/call if the best it has is a pair, otherwise it will
raise. The heuristic has a positive fitness, meaning it is able to
exploit the opponent in a more advanced stage of the game,
but only by half the margin that we have reported for the Flop.

When comparing the plot for Turn, shown on Figure 7, and
the Flop plot, we notice 2 main differences. The first being the



Fig. 7. Plot showcasing the relation between fitness and complexity for
the heuristics found for the Turn round. The Y-axis represents fitness and
X-axis represents complexity. Each dot represents 1 heuristic. The red line
is an approximation of the skill chain found from the heuristics generated.
Heuristics found with fitness bellow -0.7 were omitted from the graph.

if HandRank ≤ Pair then CHECK/CALL
else RAISE

Fig. 8. Most fit least complex heuristic for River round. Found by Exhaustive
Search, fitness is approximately -2.27. This heuristic is analogous to the one
shown in figure 2.

sharp increase that was from complexity 4 to 5 repeats, but
is followed by another sharp increase from 5 to 6. The other
is that there is a gain from incrementing complexity from 3
all the way to 9. It is possible that since the Turn states have
more information, an extra card on the board, than the Flop
it reflects on the space of viable good heuristics, making it
easier for an algorithm such as Genetic Programming to find
good individuals. Another observation that is worth making is
how the fitness interval shifted, going from -0.6 to 0.6, when
compared to the all positive interval of the Flop graph.

C. River

The most fit least complex heuristic for the last round of the
game, the River, show on Figure 8, is the exact same found
for the Flop and shown back on Figure 2. Despite playing
exactly the same, the fitness is considerably smaller, going
from 0.89 in the Flop to -2.27 in the River. This is likely due
to the opponent agent having had the chance to play the game
from start to finish, making it considerably more efficient than
when the future betting rounds were skipped. Another detail
to notice is how the best complexity 3 heuristic became more
conservative only for the Turn, that is due to there is still being
a lot of opportunities for improvement after the Flop and that
the potential positive return of checking/calling with a pair or
lower outweigh the negative return of folding at this stage.

The most fit heuristic for the River, shown on Figure 9, has
2 unique features when compared to all the others we analyzed
so far: it is the only heuristic that folds and is the only heuristic
to observe the opponents last action. The heuristic starts by
evaluating if it the best hand it has is only a highest card and in

if HandRank ≤ HighestCard AND OppAggressive
then FOLD
else if HandRank ≤ TwoPair then CHECK/CALL
else if totalPot ≥ 26 then FOLD
else RAISE

Fig. 9. Most fit heuristic for River round. It has a complexity of 8. Found
by Genetic Programming, fitness is approximately -0.41.

Fig. 10. Plot showcasing the relation between fitness and complexity for
the heuristics found for the River round. The Y-axis represents fitness and
X-axis represents complexity. Each dot represents 1 heuristic. The red line
is an approximation of the skill chain found from the heuristics generated.
Heuristics found with fitness bellow -2.5 were omitted from the graph.

case that is true and the opponent is being aggressive with their
last move. In that case it decides to fold. It is counterintuitive
that folding is only part of any heuristic when we reach the last
round of the game. It proceeds to Check/Call if it is holding
two pairs or lower. Lastly it once again folds if the pot is
above 25 Big Blinds, otherwise it raises.

By analyzing the graph for River heuristics, shown on
Figure 10, we observe that it fits somewhere in between the
2 previous. There is only 1 sharp increase, from complexity
4 to 5, but it peaks at complexity 8, with complexity 9 being
considerably close in fitness. The unique feature of this graph
is that the fitness interval is completely negative, meaning no
matter which of the heuristics found we play, we’ll lose money
to the opponent agent. This corroborates our hypothesis that,
when it is able to play the full game plan, from start to finish,
the Opponent Agent’s strategy becomes less exploitable than
when skipping later betting on previous rounds.

D. Playing the full game with heuristics

With the results from our work on Pre-Flop heuristics [19]
and the ones just presented, we raise the question: How well
can we play the game using only our heuristics? A complete
exploration and discussion of how to approach this is out of the
scope of this work, but we are interested in briefly discussing
the most naive approach to this: Play each round of the game
with the most fit heuristic we have found for that round.

Using this method, we played 400,000 games between our
best heuristics (the single best heuristic for each phase) and



our opponent agent. To our slight surprise, the set of heuristics
outperformed the opponent agent, with a fitness of 3.43. Our
best explanation for this is that the heuristics, which have
only been trained on this particular agent, have overfit to that
agent and learned to exploit it. An alternative explanation is
that the representation used to create the opponent agent is
too limited, and that the heuristic representation, despite its
apparent simplicity, is capable of learning powerful strategies.

Even though our multiple heuristic player performs well
against the Opponent Agent, it remains much more vulnerable.
This is due to the fact that our heuristics are deterministic; if
the opponents are able to read the heuristics play style, they
will be in a very good position to exploit it.

VIII. CONCLUSION

In this paper we presented techniques for generating simple
novice-level heuristics for the Post-Flop rounds of Heads-Up
Limit Texas Hold’em. We utilized 3 different algorithms to
find such heuristics, with Genetic Programming being the
most successful at generating the more complex heuristics
and Greedy Exhaustive Search being the most practical for
generating the simplest of 1-statement heuristics.

We then proceed to analyze the most fit simplest heuristic
and the most fit of heuristics found for each of the 3 Texas
Hold’em rounds being discussed. We observed and compared
their differences and made an attempt at creating a parallel
with the thought process behind the decisions the heuristics
make. We also discussed the plots of fitness x complexity
for the heuristics found for each round, and the curve that
approximates the skill chain [20] for each. The graphs also
helped observe the differences the games’ design brings to
each individual round of the game.

Lastly, we proposed a naive approach to build a strategy
for the full game from only the heuristics we have found. By
selecting the most fit heuristic of each round, we obtained a
large positive reward against the same opponent the heuristics
were trained in. This raises the question of if our heuristics
learned to do better than expected, or whether the heuristics
found were overfit to beat that specific opponent. The answers
to these question are out of the scope of this work and will
instead be proposed as future work.
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