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ABSTRACT
Beginner heuristics for a game are simple rules that allow for effec-

tive playing. A chain of beginner heuristics of length N is the list of

N rules that play the game best. Finding beginner heuristics is useful

both for teaching a novice to play the game well and for understand-

ing the dynamics of the game. We present and compare methods for

finding beginner heuristics in a simple version of Poker: Pre-Flop

Heads-Up Limit Texas Hold’em. We find that genetic programming

outperforms greedy-exhaustive search and axis-aligned search in

terms of finding well-playing heuristic chains of given length. We

also find that there is a limited amount of non-transitivity when

playing beginner heuristics of different lengths against each other,

suggesting that while simpler heuristics are somewhat general, the

more complex seem to overfit their training set.
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1 INTRODUCTION
While developing game playing agents that approximate optimal

play has been the focus of much of artificial intelligence games

research, the strategies found are rarely ever applicable by humans,

requiring a lot of processing power and workingmemory. Strategies
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vary according to the level of experience players have, while novices

try to experiment and understand the intricacies of the mechanics,

more experienced players may resort to gambles or more complex

moves. In this work, we discuss how to generate game playing

heuristics aimed at beginner players.

Following simple heuristics is not exclusive to novice players.

Instead, the theory of bounded rationality [19, 30] reasons that

humans make decisions based on the difficulty of the problem at

hand, the limitation of their knowledge and the amount of time

available. Applying simple heuristics in turn can be more effective,

as they are less prone to cause errors in execution [15].

Players look for strategies that allow them to compete with their

opponents. It is common when playing a game to find competitors

of similar skill level [12]. Therefore, novice players can do well by

starting from simpler heuristics and increasing their complexity

as they get more experienced. The length and shape of the skill

chain formed by these progressively better heuristics can indicate

a game’s strategic depth [24].

In this paper we will be discussing how to generate and evaluate

simple heuristics for the Pre-Flop stage of Heads-Up Limit Texas

Hold’em Poker. In section 2 we will contextualize our approach in

relation to previous work. In the section 3 we explain the rules of

the game and the Pre-Flop stage. In section 4 we discuss the agents

we use as adversaries when generating our heuristics. In section

5 we discuss the heuristic structure being used. In section 6 we

present the algorithms used to generate our results. In section 7

we showcase some of the heuristics we found and how they would

approximate the skill chain following their fitness and complexity.

In section 8 we discuss alternative approaches for evaluation fol-

lowing the problem of intransitivity. In section 9 we go through

discussion and conclusion. Lastly, in section 10 we present the

future directions for this work.

2 BACKGROUND
Agents that target optimal game-playing were shown to be able

to compete on the same level or defeat expert and professional

human players at games such as Chess [9], Checkers [27], Go [29]

and Othello [8]. More recently computers were able to beat top hu-

man players at the game of Heads-Up No-Limit Texas Hold’em [7].

While these approaches target the optimal strategies to win, our

approach focuses on discovering simple heuristics and as such we

expect a trade-off between efficiency and simplicity. However, by
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Figure 1: An example of the Fast and Frugal Tree structure.
In blue are the decision nodes that represent the conditions.
In yellow are the terminal nodes that represent the actions
to take.

exploring the gain in quality in relation to the increase in complex-

ity, we should in principle be able to quantitatively approximate

the strategic depth of the game [24].

In order to be considered simple, heuristics need a structure that

is easy to learn and read. To that effect, Fast and Frugal Tree (FFT)

is simple to understand and execute, being a common structure

in bounded rationality theory [14]. As shown in Figure 1, FFT is

composed of a chain of nodes representing conditions that when

satisfied return an action to be executed, otherwise lead to a FFT

sub-tree or default action choice. The nodes can be implemented as

if-then-else statements, allowing FFTs to be represented as decision

lists [2, 26]. Over this work will be using FFTs to represent beginner

heuristics for playing Heads-Up Limit Texas Hold’em.

We have previously introduced how to generate simple novice

heuristics for the game of Blackjack [10]. In that work we detailed

and discussed different algorithmic approaches and showcased how

we could use the heuristics found to approximate the game’s skill

chain. With such, the main contribution of this work is tackling the

Pre-Flop stage of the game Heads-Up Limit Texas Hold’em Poker

and exposing the differences in approach and the influence it has

on the method of evaluation. Different than Blackjack, considered a

1.5 player game, where the players are playing against a previously

known deterministic agent (the dealer), in this form of Poker two

autonomous players go head-to-head, each playing according to

their own strategy, undisclosed to their opponent previously. The

fact that the adversary is now an intelligent agent, that could change

strategies between games, requires a change in methodology in

how we approach comparing the quality of heuristics. A two-player

game also introduces the problem of intransitivity: If I have heuristic

A that wins against heuristic B and heuristic Bwins against heuristic

C, that does not guarantee that A will win against C.

Evolutionary algorithms have been able to learn effective game-

playing strategies for games. For example, there are evolutionary

approaches to the Chess endgame [16], Backgammon [3], Lose

Checkers [5], Pong [23]; neuroevolution for Super Mario Bros [34];

or evolved agents for Core War [36], Robocode [28], Pac-Man [21].

Evolution strategies were also used to generate general driving

controllers [1] and Blackjack strategies [13, 18, 20, 25]. Poker has

also been a subject of evolutionary approaches, with the target being

to create agents that could maximize winnings [4]. Our approach is

focused on creating a heuristic that can be read and understood by

novice players and to achieve such there is a cost to their fitness,

so we have to find a balance between quality and complexity.

Our approach is related to the one used by Tsang et. al [35].

They utilize genetic programming to build decision trees used as a

forecasting tool for investments. The authors intended to create a

system that could generate, with the help of historical data, human-

readable trees that could then be accepted or rejected by the users.

Although our approach doesn’t expect human feedback towards

the results of our generation, it is a hard constraint that humans

can read and be able to execute are proposed solutions.

The gameHeads-Up Limit TexasHold’em has beenweakly solved

recently [6, 32]. In their work, Bowling et. al used a variant of

counterfactual regret minimization, computing approximations of

a Nash equilibrium type of solution. The solution presents input to

common strategy discussions about what would be optimal play.

The agent employs a mixed strategy: It has different probabilities

for taking the actions, given the current state of the game. The

heuristics we present on this paper provide deterministic play, as

opposed to mixed-strategies, and despite being commonly stated

that Rules of Thumb do not go above beginner level [31], this is

exactly the skill level of the players we target.

3 HEADS-UP LIMIT TEXAS HOLD’EM POKER
Texas Hold’em is one of the most popular variations of Poker. It is

commonly played at casinos and online. In Texas Hold’em, each

player has their own hand of 2 cards, kept hidden from others, and

share a common pool of 5 cards face-up on the table. Players are

betting on the best 5-card poker hand they can build from the 7

cards available to them.

A hand in Texas Hold’em is played over 4 stages, each adding

more information to the gamestate. At each stage, players take turns

choosing 1 of 3 possible actions: Raise, Call/Check, Fold. Raise sees

the player increase the amount of money being bet by matching

and increasing the current highest bet. In a Call/Check the player

matches the size of the current highest bet. Deciding to Fold has

players abdicating from all money they bet up to this point and

no longer being a contender to win the round. At the first stage,

the Pre-Flop, players take actions knowing only their two cards.

On the second stage, the Flop, players take actions after the first 3

face-up cards are revealed. On the third stage, the Turn, the forth

card is added to the common card pool. The last stage, the River,

reveals the last face-up and ends once no more players are able to

take actions. At the end, players that have not folded compare their

poker hands and the highest hand takes the money pot.

Before the round starts, a player assumes the role of dealer,

dealing out cards to all players. The role of dealer is passed on

to the next player when new round starts. The player to the left

of the dealer has to bet a fixed amount of money, the small blind.

Furthermore, the next player has to bet twice that amount, the big

blind, before the round starts.

In this work we work with one variant of Texas Hold’em. Limit

Texas Hold’em refers to a restriction on the betting, more specific

the Raise action. Every Raise increases the current highest bet by
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the amount of 1 big blind. Furthermore, Heads-Up refers to a 2-

player game of Poker. In this work we will then be generating

simple heuristics for playing the Pre-Flop stage of Heads-Up Limit

Texas Hold’em Poker.

4 ADVERSARY AGENTS
In order to generate heuristics, we need to have a method to deter-

mine their fitness. Since the game revolves around betting, we use

the average amount of money earned over the course of several

games as the fitness for an individual. Since we are only focused in

playing only the Pre-Flop round, we simulate the rest of the game

without any bets occurring, comparing the hands of the players

after dealing all remaining cards. In order to play these games, the

heuristics need an opponent. Due to the stochastic nature of Poker

mechanics, we play 400,000 hands with each individual to calculate

their fitness. For this purpose we have 2 different agents and have

the heuristics play 200,000 hands against each, reseting the money

earned at the end of each and alternating the player that acts first.

The first agent is inspired by the beginner Pre-Flop strategy de-

scribed in the book Play Poker Like the Pros [17]. In it, Phil Hellmuth,

a professional poker player, suggests playing only the hands de-

scribed as the top ten hands, choosing to Fold in all other situations.

The top ten hands presented are, from best to worst: A-A, K-K, Q-Q,

A-K, J-J, 10-10, 9-9, 8-8, A-Q and 7-7. The author describes this

strategy as suitable to keep the players "in the game" while they

learn the intricacies required for higher level play.

The second agent was built based on Cepheus, the agent cre-

ated for tackling the problem of solving Heads-Up Limit Texas

Hold’em [6]. It represents a fraction of one possible Cepheus strat-

egy. With the data of one Nash Equilibrium generated by Cepheus

for Pre-Flop play, we attempted to make an agent that would recre-

ate this strategy. The data provides the probabilities of each possible

action based on the 2 cards the agent has and the sequence of ac-

tions in the game so far. With the probabilities mapped, we use a

random number generator to return a number n, using a uniform
distribution, such that 0.0 ≤ n ≤ 1.0. This n combined with the

action probabilities then defines the action the agent will take.

5 HEURISTIC STRUCTURE
Asmentioned before, all our heuristics are deterministic. The heuris-

tics we generate are represented as fast and frugal trees, or in this

case decision lists representing chains of if-then-else statements.

A heuristic could have any number of statements, but more state-

ments result in a more complex heuristic. Each statement in turn is

formed by a condition and a resulting action, with the else state-

ment at the end returning the default action, the one used when

all the conditions before evaluate to false. Conditions in turn are

formed by a single clause or a conjunction of multiple clauses.

To form heuristics for Heads-Up Limit Texas Hold’em the clauses

can test different elements of the gamestate. The 2 cards in the

player’s hand are addressed as highestCard and lowestCard, which
represent the card of highest and lowest value respectively. Consid-

ering the face cards Ace, King, Queen and Jack to be of value 14,

13, 12 and 11, highestCard and lowestCard can be compared on the

interval 2 ≤ x ≤ 14.

Two boolean checks can also be clauses: hasPair and isSameSuit.
The first, hasPair, is true when both cards in the player’s hand have

the exact same value. The second, isSameSuit, in turn evaluates if

both cards are of the same suit. The negative of each boolean check,

not hasPair and not isSameSuit, are also added as possible clauses.

The test cardDifference evaluates the gap between the cards in

the player’s hand. The gap is analogous to the result of subtracting

the values of the highest card by the lowest card. The card gap can

then be in the interval 0 ≤ x ≤ 12.

Lastly totalPot represents the total money resulting from sum-

ming the amounts that each player has bet so far. In terms of clauses,

we represent the total pot in units of number of big blinds, so a pot

of 5 is equivalent to 5 big blinds and a pot of 10 represents 10 big

blinds. In our simulations of the game, each player has a total of 50

big blinds available for betting at the start of new hand.

Our heuristics are then formed according to the following struc-

ture:

if Condition 1 then Action 1

else if Condition 2 then Action 2

else if ... then ...

else Default Action

With each condition being formed by one or more clauses from

the ones we listed above. The actions for our heuristics can have 1

of 3 values, representing the actions that exist in the game: Raise,

Check/Call and Fold.

We also evaluate each heuristic in a metric of complexity. We

calculate complexity by counting the number of actions plus the

number of clauses (considering all conditions). Although this num-

ber doesn’t take into account that, for humans, one clause might be

easier to understand or test for than another, this simple calculation

gives us a clean simple way to compare heuristics.

6 ALGORITHMS
In order to generate the different heuristics we resort to a selection

of search algorithms which we discuss in this section. Each tech-

nique we present in here has trade-offs, and employing all of them

results in a more robust set of heuristics. We first introduced these

techniques when generating simple heuristics for Blackjack, with

different primitives and fitness function.

6.1 Greedy-Exhaustive Search
Ideally when teaching beginners good strategies we would like to

start with the most basic guideline and gradually, as they improve,

introduce extra steps that complement the original, resulting in

stronger play. With that goal in mind we turn to this approach.

When generating heuristics with Greedy-Exhaustive Search, we

start from the simplest we can have, the best possible 1 statement

heuristic. In order to find such, we generate all possible heuristics

we can have with only 1 condition, by conjugating all variations of

our clauses with all variations of our actions. We then proceed to

calculating the fitness of each of those possible candidates and the

one with the highest score is returned as the result of the search.

In order to increase the complexity of the heuristic, aiming at

also increasing the fitness, we fix the statement and default action
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we previously found and proceed to repeating the process for gen-

erating following statements, which are appended after the ones

we already found.

Although this algorithm can possible increase the quality of the

heuristic with the addition of new statements, it is also very prone

to finding local maximums. Due to this effect, it is not uncommon

for the heuristic to stop improving after a certain step, while also

having lower fitness than another heuristic of the same complexity

found with another method. Performing a non-greedy exhaustive

approach to generate more than 1 statement at a time becomes

unfeasible very fast due to the space growing exponentially with

the increase in number of statements.

6.2 Axis-aligned Search
In order to reduce the search space for heuristics we devised a

technique called Axis-aligned Search. The concept is to exhaustively

search along a fixed axis so as to largely reduce the search space.

Each clause and each action present in a tree is considered an axis

that we perform the search on.

The algorithm starts by generating a heuristic with random

clauses and statements. For each clause we generate another N
candidate copies of the current heuristic, each diverging from all

the others only in the value being compared in the clause. We then

have N variants for the N possible values of a clause (N varying

depending on the clause). The same concept is repeated for each

action present in the heuristic. We then evaluate the fitness of all

candidates. We pick the most fit for the current heuristic and fix the

axis that was changed to generate it. We then proceed to the next

iteration where new candidates will be generated from all axes that

haven’t been fixed yet. We repeat this loop until we fixed all axis

or an iteration returned the same heuristic it had at the start of it.

Axis-aligned Search, due to the randomness element of the start-

ing step, has a high variance in the quality of individuals it finds.

However, since it is a much more inexpensive algorithm than ge-

netic programming, which we will discuss next, we are able to run

a significant amount of trials in a reasonable amount of time and

then choose to keep the most fit heuristics found.

6.3 Genetic Programming
Finally, in order to look for the fittest heuristic for a given complex-

ity we use genetic programming [22, 33]. We restrain our search to

heuristics with a fixed number of statements and run the algorithm

multiple times, with different numbers, to generate heuristics of

different complexities.

To start the algorithm we have a population of randomly gen-

erated FFTs with a set number of conditions. The population is

generated to guarantee that no 2 individuals are the same. In every

generation, the most fit 50% of the population creates the elite. We

then create new candidates by mutating copies of the top 20% in-

dividuals of the population. Furthermore, we crossover members

of the elite, picked at random, until we generate a total of new

individuals equal to 30% of original population size, always keeping

the original individuals involved in the crossover. The resulting

children are then submitted to mutation. At the end of a genera-

tion we then have a population of elite + mutated elite + mutated

crossover children.

The mutation algorithm traverses every node of the tree, choos-

ing to mutate them based on the mutation probability. When a node

is selected for mutation; if the node is a clause it will change it to an

entirely new one; if the node is a terminal, which is not an action, it

will be substituted for a terminal of different value; if the node is an

action, it will be replaced with one of the 2 other actions. Mutating

the 2 actions on the deepest level of the tree, the default action and

the action resulting from the last condition, can lead to both being

the same action, which would render the last condition useless. To

avoid such, we repeat the mutation step when in this situation.

The crossover operator performs a one point crossover. A sub-

tree is randomly selected for crossover on one individual. Then, the

subtree on the same level and of the same depth on the other indi-

vidual is used to complete the crossover. The two child individuals

generated are then returned as the result of the crossover, without

destroying their parents.

We run our genetic algorithm with a population of 200, for 100

generations. The fitness function used is the one described in the

adversary agents section.We set a probability of 30%whenmutating

the elite and of 10% when mutating the crossover children.

The genetic algorithm is more expensive than the axis-aligned

search, but the results across runs have much smaller variance.

Using a different approach for the genetic algorithm than what we

previously did for Blackjack [10], it was able to generate the best

results for most of the heuristics complexities when compared to

the axis-aligned search. We believe that this is also due to Texas

Hold’em Poker requiring a larger vocabulary than Blackjack, which

increased the variance of axis-aligned, which was previously more

successful in finding the best fit individuals.

7 RESULTS
Our objective is to generate simple heuristics for Heads-Up Limit

Texas Hold’em. With the algorithms presented on the previous

section, we proceed to generate heuristics of various number of

statements and with different complexities. We attempt to find the

best heuristic of each complexity, which can take multiple runs

of one or more of the algorithms, so we can approximate the skill

chain of the game.

To generate the 1-statement heuristics we use greedy-exhaustive

search. Figure 2 shows the most fit heuristic found for complexity

3. This represents the most fit simplest heuristic our methods can

generate. It represents a "safer" play style, only choosing to raise in

hands where both cards have value above 10. The heuristic loses

money over time, having a fitness of approximately -0.228.

if lowestCard ≤ 10 then Check/Call

else Raise

Figure 2: The best simplest heuristic we can generate. This
heuristic was found with greedy-exhaustive search. It has
complexity 3. Fitness is -0.227784375.

From the previous heuristic, we proceeded to use Greedy Exhaus-

tive Search to generate the second statement. In parallel, we had the

genetic programming algorithm search for 2-statement heuristics.

The best heuristic found with GA proved to outperform the fitness
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of the Greedy-Exhaustive 2-statement heuristic by over 0.5. This

showcases the problem of local maximum convergence present

in the Greedy-Exhaustive technique. Figure 3 shows the heuristic

found by GA. Although this heuristics raises on more hands than

the previous, it only raise very early in the game, choosing only to

do so only while there are at most 2 big blinds on the pot. Despite

that, the heuristic displays a significant gain in fitness, no longer

losing money, winning an average of 0.5.

if hiдhestCard ≤ 10 then Check/Call

else if TotalPot ≤ 2 then Raise

else Check/Call

Figure 3: The best 2-statement heuristic of this complexity,
found using genetic programming. Complexity is 5. Fitness
is 0.50010625.

When analyzing the most fit 3-statement heuristic, we note that,

once again, the best individual is not derived from the heuristic

found in the previous step. Figure 4 shows the result in case. This

heuristic does not raise hands where the lowest value card is bellow

8, unless it also has an Ace, King or Queen. Even then, it only raise

at the very early game, similar to the previous heuristic, except

when it has a pair. The heuristic has the player continuously raising

a hand that has a pair of 8 or higher. This decision to play high

pairs aggressively follows a similar set of mind as the beginner

Pre-Flop strategy suggested by Phil Hellmuth on his book [17].

This heuristic shows considerable improvement over the previous,

scoring a fitness of approximately 0.778 with complexity of 8.

if lowestCard ≤ 7 and hiдhestCard ≤ 11 then Check/Call

else if TotalPot ≤ 2 then Raise

else if hasPair then Raise

else Check/Call

Figure 4: The best 3-statement heuristic found using genetic
programming. Complexity is 8. Fitness is 0.777696875.

Going against the trend set by the previous examples, the best

4-statement heuristic we found is directly derived from the best

3-statement candidate discussed before. Both heuristics were found

on independent runs of GA. Figure 5 shows the representation of

the 4-statement individual found. This heuristic of complexity 10

adds an extra statement that has the player fold when the adversary

is being aggressive and raising constantly, given that the hand does

not fit the conditions that precede it. This could be an indication of

the heuristic overfitting to the opponents it was trained against as

it realizes that if they kept raising under does circumstances, they

were likely to have a better hand. This heuristic has a complexity

of 10, which is 2 more than the previous heuristic we discussed,

meanwhile its fitness is approximately 0.74, which represents a loss

of about 0.03 over the previous.

7.1 Comparison of Heuristics and Skill Chain
Once we had generated a diverse enough group of heuristics it was

possible to plot those heuristics in terms of their complexity and

if lowestCard ≤ 7 and hiдhestCard ≤ 11 then Check/Call

else if TotalPot ≤ 2 then Raise

else if hasPair then Raise

else if TotalPot ≥ 6 then Fold

else Check/Call

Figure 5: The best 4-statement heuristic found with genetic
programming. Complexity is 10. Fitness is 0.743465625.

Figure 6: Chart comparing different heuristics. Each dot rep-
resents a different heuristic generated. The X-axis repre-
sents the complexity of the heuristic, meanwhile the Y-axis
shows the fitness. The red curve that connects the most fit
individual of every complexity is a tentative candidate for
an approximation of the skill chain.

fitness in order to approximate the skill chain curve for the Pre-flop

stage of Limit Texas Hold’em. Figure 6 shows this comparison.

Following the shape of the curve, we observe a significant gain

in fitness from complexity 4 to 5 and above. One of the main differ-

ences between these heuristics is the number of statements: while

heuristics of complexity 3 and 4 are 1-statement long, all our heuris-

tics above that complexity have 2 or more statements. Furthermore

we notice that the gain in fitness gradually reduces as heuristics get

more complex, until it eventually converges, showcasing little to no

gain from adding clauses or statements. This curve resembles the

one we found for Blackjack [10]. This would indicate that, in the

Pre-Flop stage of Heads-Up Limit Texas Hold’em, there are small

steps a beginner can make to improve their game considerably.

Another point to notice is the slight drop in performance and small

amount of samples for higher complexity heuristics. Due to the

increase in computation cost, an inferior number of runs was made

for heuristics with more than 5 statements.

This graph would be sufficient for itself, had the game possessed

a deterministic opponent, such as the dealer on Blackjack, but since

this is a 2-player game, a couple questions need to be raised. The

first one being if there is a intransitivity problem. Since each player

chooses their own strategies, it is possible to have a relationship

where heuristic A is dominant against heuristic B and B is domi-

nant against heuristic C, but C is dominant against A. If we notice

that intransitivity in fact occurs with the heuristics we found, a
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consequent question is raised: How can we evaluate the different

heuristics in order to compare their fitness?

8 ALTERNATIVE EVALUATION METRICS
In order to investigate the existence of non-transitivity, we chose

a group of heuristics, from the ones we found, and played them

against every other one in the group. For this experiment we chose

the most fit heuristic of every complexity. We can then look to

notice if heuristics that are most fit when playing against our auto-

mated agents still have the upper-hand when going head-to-head

versus one another. Figure 7 displays the results of the match-up of

different heuristics.

The columns and rows of the table are labeled for the complexity

of the heuristic they represent. The table shows the average amount

of money the row heuristic earned when playing the column heuris-

tic. By analyzing the table, we can see evidence of non-transitive

relationship between heuristics. Looking at heuristics 8, 9 and 10

we observe that 8 beats 9, 9 beats 10 and 10 is the only heuristic ca-

pable of earning money versus 8. The relationship repeats itself for

7, 13 and 14, with 7 triumphing over 13 by a reasonable margin, 13

beating 14 with a small margin, and 14 having the best performance

of a heuristic against 7.

The table also reveals peculiarities about the match-ups, if we

analyze it in relation to the heuristic comparison chart of Figure 6.

Having 14 lose to 9, 10, 11, 13 and 15 despite showing better fitness.

Also, the case of 11, 13 and 15 that have much higher value when

they lose, in most cases, than other heuristics of complexity 6 or

above. These facts lead us to the hypothesis that higher complexity

heuristics might be overfitting to our automated agents. Having

more than 5 statements, as is the case for all the heuristics above

complexity 11we found, may have tailored their playstyle to explore

some weakness specific to these agents, instead of making more

generally applicable decisions.

In order to validate the quality of our heuristics and test the

hypothesis of overfitting raised from analyzing the match-up table,

we propose an alternative evaluation method.

8.1 Heuristic Set Evaluation
To evaluate the generality of the play-style of our heuristics, we

chose a small subset of all heuristic found this far as a test group.

We then proceeded to repeat our original analysis comparing in-

dividuals, but now having fitness as the average earnings from

playing all members of the test group.

For the subset of heuristics that formed the test group, we want

to create a population that is diverse enough while also having the

highest possible fitness. The first step, in order to generate diversity,

is to create a method to measure the distance between 2 individuals.

We start by mapping, for each heuristic, the action chosen for every

possible hand, for all possible values for the total pot. We then

compute the hamming distance between these mappings.

With a method to measure distance, we compute, for each heuris-

tic, their distance to a heuristic that returns Raise for every move

and to a heuristic that returns Check/Call for every move. Then, in

order to look for individuals that are representative of a different

diversities, we use k-means to calculate the center of the different

clusters found. Once we have such, we allocate the points in each

Complexity Fitness Cluster Best of Complexity
5 -0.2656 7 No

7 0.6648 2 No

8 -0.1771 4 No

8 0.7777 6 Yes

10 0.7434 3 Yes

11 0.6912 5 Yes

13 0.6583 8 No

14 0.7444 1 Yes

Table 1: Table showing information about the heuristics that
compose the test group. Each row represents one heuris-
tic. The Complexity column indicates the complexity of the
heuristic. The Fitness column is the fitnesswhenplaying the
automated agents. The Cluster column refers to which clus-
ter the heuristic belongs to, according to the labels on Figure
8. The Best of Complexity column represents whether that
heuristic is the most fit of its complexity.

cluster, by selecting the one with the center they are the closest

to. We then pick the most fit heuristic of each cluster to be their

representative. Figure 8 shows the distribution of heuristics in the

space, their fitness and the center of each cluster found with the

k-means algorithm for k=8.

The evaluation group was then formed by 8 heuristics across 7

different complexities. Table 1 shows information about the heuris-

tics in the group. The group has 2 individuals with negative fitness,

which represent the clusters on the top-left and top-right of Figure

8. Out of all heuristics, half are the most fit of their own complexity.

This data leads us to believe that these heuristics form a heteroge-

neous group, fitting with we were looking for.

After deciding the test group, we defined a new fitness function.

We calculate the fitness of an individual by having it play 800,000

matches against each of the 8 heuristics on our evaluation set. We

then return the average money gained across all matches as the

fitness. We then proceeded to repeat our analysis of Complexity

versus Fitness. Figure 9 shows this comparison.

By comparing the resulting graph in relation to the previous

evaluation we quickly take note of the discrepancy in shape. While

the previous curve was smoother, this presents a drop whenmoving

from complexity 7 forward, followed by another increase followed

by another sharp drop. We also proceeded to form a line, colored

blue in Figure 9, that connects the heuristics that used to be most fit,

for each complexity. We notice that in many cases, specially for the

higher complexity individuals, not only are they no longer the best,

but also present a sharp drop in comparison to other heuristics that

they once bested. This graph give us an indication that overfitting

is in fact happening as the complexity grows. Specifically in the

case of complexity 11 and 13, we can observe that the heuristic

that once was the most fit, has now been surpassed by another

candidate by a significant margin.

9 DISCUSSION AND CONCLUSION
In this paper, we have shown and discussed techniques to gener-

ate and evaluate simple heuristics for playing Pre-Flop Heads-Up
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Figure 7: Table showing the results of the Match-Up of different heuristics played over 800,000 games. Each row represents
the most fit heuristic of that complexity. Each value is the fitness of playing the row heuristic position versus the column
heuristic. The diagonal is not computed (the heuristic playing against itself). Cells are color coded: the greener a cell is higher
the value, the redder a cell is lower the value. The last column indicates the total from summing the values of the row.

Figure 8: Distance comparison between heuristics. The X-
axis represents the hamming distance to a heuristic that
uses Check/Call in every single scenario. The Y-axis repre-
sents the distance to a heuristic that always uses Raise. The
color of the dots indicate their cluster. Each gray stars repre-
sents the center of one of the k-means clusters for k=8.

Limit Texas Hold’em. Our heuristics are meant to be simple, to be

usable by novice players, and with are therefore represented as

Fast and Frugal Trees. The main differences between this approach

compared and the one we previously presented for Blackjack [10]

is the introduction of a new vocabulary and a set of approaches to

analyze the heuristics for a 2-player game.

We reintroduced the 3 different algorithms used for generating

the heuristics. Greedy-Exhaustive search is efficient at finding very

simple heuristics, but is likely to converge to a local maximum.

Figure 9: Comparison of complexity versus fitness for all
heuristics we found. Fitness is calculated using the test
group of heuristics. The red line connects the most fit in-
dividuals. The blue line connects what were previously the
most fit individuals (the comparison in Figure 6).

Axis-aligned search has short runtime, but high variance due to

the random element at the initial step. Genetic Programming finds

good results more consistently, but has at a higher computational

cost. Most of the higher quality heuristics, independent of their

complexity, were found using Genetic Programming. This finding

diverges from what we observed when searching for Blackjack

heuristics, Axis-aligned Search was more successful in generat-

ing quality heuristics in that game. This can be a consequence of

Pre-Flop Heads-Up Limit Texas Hold’em having a larger space of

possible heuristics, in comparison to Blackjack.
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Playing against an opponent that can change and adapt their

approach as the game progresses makes 2-player games raise new

challenges, particularly the intransitive nature of strategies. This

makes the evaluation and comparison methods we used to rank

heuristics for Blackjack be much less effective. To remedy this,

we introduced a methodology to verify and analyze the impact of

intransitivity in the heuristics found. By creating a test set, formed

by selecting heuristics from the ones found in order to have a

heterogeneous group, we were able to create a new evaluation

metric. When comparing the results of the original method with

the one from the test set, we observed strong indicators of large

heuristics (with complexity larger than 7) being overfitted to their

training set. Given these results, although we have yet to find a

reliable approximation of the complete skill chain of the game,

we made significant steps towards discovering it, and with such a

method to estimate the strategic depth.

10 FUTUREWORK
Having only explored the Pre-Flop stage of the game, the next log-

ical step is to evaluate how our techniques perform on the other

stages of the game. Each stage adds more information to the games-

tate and requires a different vocabulary to generate the clauses from.

Another future challenge is to explore regular Limit Texas Hold’em,

having more than 2 players involved in the game. Furthermore, we

would like to be able to represent mixed strategies, opening the

possibility for better heuristics.

We believe that generating simple heuristics can be an asset to

explore solutions for games we don’t know good strategies for, such

as a game under development, enabling solutions such as partially

automated playtesting [11]. Another possible application is to use

the data from the heuristics found to build automated agents that

could adapt their play-style during the game.
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