
Fast and High Quality Overlap Repair for Patch-Based Texture Synthesis

Andrew Nealen Marc Alexa

Department of Computer Science
Darmstadt University of Technology

{nealen,alexa}@informatik.tu-darmstadt.de

Abstract

Patch-based texture synthesis has proven to produce high
quality textures faster than pixel-based approaches. Previ-
ous algorithms differ in how the regions of overlap between
neighboring patches are treated. We present an approach
that produces higher quality overlap regions than simple
blending of patches or computing good boundaries, how-
ever, that is faster than re-synthesizing invalid pixels using a
classical per-pixel synthesis algorithm: we use a k-nearest
neighbor (knn) data structure, obtained from the input tex-
ture in a precomputation step. Results from our implemen-
tation show that the algorithm produces high-quality tex-
tures, where the time complexity of the synthesis stage is
linear in the number of re-synthesized pixels and, therefore,
scales well with the size of the input texture.

Keywords: Patch-based Texture Synthesis, Principal
Component Analysis, k-coherence search

1. Introduction

The field of texture synthesis is concerned with synthe-
sizing, from an input texture sample, an arbitrary amount
of perceptually similar output texture in 2D image space or
on surfaces of 3D models. The term perceptually similar
in this context means that the user should recognize the re-
sult as the same texture, yet it must also contain sufficient
variation of the input so it is not perceived as identical.

Patch-based algorithms tend to preserve the global struc-
ture very nicely, however, sometimes introduce local arti-
facts in the regions of overlap between neighboring patches.
The approaches differ in their strategy of generating good
regions of overlap. Some of the algorithms [3, 6, 5, 2] use
only the pixels coming from the overlapping patches, either
blending them or finding a good (non-trivial) boundary be-
tween the patches. This leads to potentially fast algorithms
that, in some cases, produce visible artifacts. These can be
reduced by adaptively varying the patch sizes [8, 7]. A more

flexible method is to explicitly repair bad pixels in the over-
lap region. This could be done in the spirit of Markov Ran-
dom Field per-pixel synthesis by exhaustively searching the
input texture for similar neighboring valid pixels [4, 10, 7].
Accelerating per-pixel synthesis generally involves intelli-
gently reducing search space [1, 9] or precomputation [11].

In this paper, we introduce a fast, effective and control-
lable algorithm, which can entirely replace the overlap re-
synthesis stage described in our previous paper [7]. Therein,
the overlap re-synthesis is of complexity O(rNlogN),
(with N = number of pixels in the input texture and r =
number of re-synthesized pixels) due to the repeated Fourier
Transform of the neighborhood mask, which must be of size
N × N as it is convolved with the entire input (see [7, 8]
for details). This obviously does not scale well for large in-
put images with many re-synthesized output pixels (= large
values for N and r). We therefore propose an alternative al-
gorithm, inspired by k-coherence search [9], which is linear
in the number of re-synthesized pixels.

2. Patch-Based Texture Synthesis with Per-
Pixel Repair

We briefly explain the basic idea of patch-based texture
synthesis with per-pixel re-synthesis of invalid pixels in the
overlap regions. This is essentially a non-adaptive version
of Hybrid Texture Synthesis [7]. Note that the ideas we
present later apply to all patch sizes or shapes.

Given an input texture and the goal to generate an arbi-
trarily sized output texture patch-by-patch, the algorithm is
informally described as follows:

• (1) For each output texture patch

– (a) Find the best patch in the input texture, con-
strained by overlap with the existing synthesis re-
sult.

– (b) Compute the per-pixel error in the overlap
region (i.e. the difference between pixels com-



ing from the neighboring patches); mark each
pixel exceeding a user defined pixel error toler-
ance (δmax in [0,1]) as invalid.

– (c) Compute a traversal order for these invalid
pixels (pixel traversal map).

– (d) Finally, re-synthesize each invalid pixel indi-
vidually in the order given by the pixel traversal
map.

The main benefit of this algorithm is the degree of flexi-
bility in the generation of overlap regions, as in some cases,
the pixels coming from neighboring patches are insufficient
to generate a visually pleasing overlap region. This goal
has been achieved at the cost of additional computational
effort, especially when many pixels must be re-synthesized.
In this paper, we therefore concentrate on the acceleration
of step (d). For details on the other steps, see other work on
patch-based texture synthesis [3, 6, 7].

In an exhaustive search scheme for re-synthesizing a sin-
gle pixel, the entire input texture is compared to the pattern
of valid synthesized pixels within a box-shaped neighbor-
hood of the target pixel, employing the same L2 error met-
ric used for finding best patches. Naive L2 comparison of
two images I1 and I2, each with N pixels, for each of the
N possible circular shifts of I1 (or I2), results in O(N2)
complexity. This can be reduced to O(NlogN) by ele-
gant reformulation in Fourier Space [8]. Still, performing a
few Fourier Transforms for each re-synthesized pixel sim-
ply does not scale well with the size of the input texture.
Unfortunately, we cannot adopt many of the existing accel-
eration schemes, as we are confronted with a non-fixed (e.g.
non-L-shaped [10]) neighborhood of valid pixels. We have
therefore decided to implement a variant of k-coherence
search, which we describe in the following section.

3. Acceleration

The basic principle is to restrict the search space of pos-
sibly fitting neighborhoods for each re-synthesized pixel.
Ashikhmin [1] notes, that in the case of natural textures it is
sufficient to inspect only a reduced set of candidate pixels
Ca in the input texture. This set is constructed by gather-
ing the pixels in the (e.g. 3×3) neighborhood around the
target pixel (the one dark gray and two light gray pixels in
the left image of Fig. 1), locating their original positions
in the input texture (Fig. 1, upper right) and collecting the
properly shifted pixels, which constitute the set Ca (the two
hatched pixels in the upper right image of Fig. 1). For this it
is necessary to store the original location (in the input tex-
ture) of each output pixel. We name this two-dimensional
array (with dimensions identical to the output texture) the
source map. Note that in Ashikhmin’s paper this data struc-
ture is termed the array of original positions [1]. Then,

A

B

Figure 1. Left: The intermediate synthesis re-
sult. Upper right: the input texture and Ca.
Bottom right: the input texture and Cext.

when re-synthesizing a single pixel (see Fig. 1, left image),
one must only check the neighborhoods of the candidate set
Ca against the target neighborhood in the output texture.

In the setting of overlapping patches, this approach tends
to produce unsatisfactory results. Pixels in the overlap re-
gions generally come from only two or three patches. Using
neighboring pixels from the source texture can, therefore,
only extend the existing contiguous pixel-patches to even-
tually meet along a path in the patch overlap region, similar
to Image Quilting (IQ) [3]. The example in Fig. 1 shows
this phenomenon: the two hatched pixels in the candidate
set Ca are both simply extensions to the already existing,
contiguous patches A and B (Fig. 1, left).

Fig. 2 compares this technique with the results of an ex-
haustive search. Generally, the region growing nature of
Ashikhmin’s algorithm is favorable for per-pixel synthe-
sis, but might produce inferior results when combined with
patch-based approaches.

Figure 2. Left: the input texture. Middle and
right: 64×64 synthesis results using four
32×32 patches. Using an Ashikhmin-based
(middle) and an exhaustive search strategy
(right) for overlap re-synthesis.

To increase the number of possible source locations in
the input texture, we add pixels that are similar to the re-
gions of the overlapping patches. This is essentially a vari-
ant of Tong et al.’s k-coherence search [9]. More precisely,
for a given input texture with M pixels and user provided



parameters k (number of nearest neighbors) and np (the
np ×np box shaped pixel-neighborhood), we precompute a
k-nearest neighbors (knn) data structure, where we store for
each of the M input pixels a list of its k-nearest neighbors.
First, we construct for each input pixel the associated high
dimensional feature vector by ordered concatenation of the
np × np RGB-triples in the box-shaped neighborhood. To
this set of feature vectors we apply Principal Component
Analysis (PCA), retaining 95-97% of the original variation.
Depending on the input texture’s structure and color varia-
tion, this generally reduces the feature vector dimensional-
ity by 75-90%. We then compute the k-nearest neighbors to
each pixel in the input using the freely available TSTOOL
Matlab package. This knn data structure is computed and
stored once for every new texture we wish to synthesize.

Using the precomputed knn list, for each re-synthesized
pixel, we now extend the candidate set of pixels in the
source texture related to the valid neighbors (Ca) by the
k-nearest neighbors of each pixel in this set, resulting in
the extended candidate set Cext (the two hatched and five
black pixels in Fig. 1, bottom right). Depending on the
input texture, the value for k and the neighborhood size,
we can synthesize textures equal in quality to those gen-
erated by exhaustive search during per-pixel re-synthesis,
but with a significant speedup: the runtime synthesis al-
gorithm is relieved of the burdening Fourier Transforms in
the overlap re-synthesis stage. Now we only need to per-
form a small amount of L2-comparisons between the re-
synthesized pixel neighborhood and candidate set neighbor-
hoods, selecting the best pixel therein.

The only question that remains is: how to main-
tain/update the source map(s) in our setting. Valid pixels
in the overlap region are the result of linearly blending the
pixel from neighboring patches (using an alpha mask with
values in the range [0,1]). Strictly speaking, valid pixels
lack a reasonable location in the source texture. A possi-
ble (but expensive solution) is to maintain multiple source
maps, one for each contributing pixel. By experimentation,
we have discovered that maintaining a single source map
(based on the pixel with the largest contribution) ensures
a sufficiently large candidate set. In practice, each time
we copy a new patch into the synthesis result, if the alpha
mask value is greater than 0.5 (= more contribution from the
newly added pixel), we store the source index of the new
pixel, otherwise we retain the existing index. The results
from the single source map algorithm are visually indistin-
guishable from experiments with multiple source maps.

4. Tradeoffs

The box-shaped neighborhood sizes np and n during pre-
computation and at runtime, and the numbers kp and k of
nearest neighbors for precomputation and at runtime allow

a trade-off between quality and speed. Smaller values for k
and n lead to faster synthesis at the potential cost of visual
quality. Note that setting k = 1 results in an approach com-
parable to Ashikhmin’s search strategy (Fig. 2, middle). For
values of np = n = 7×7 we show the synthesis quality for
various settings of k in Fig. 3. We find that while setting
k = 1 results in a visible loss in quality, using k = 4 is ac-
ceptable, whereas setting k = 11 is identical to the results
of exhaustive search.

k = 1 k = 4

k = 11 Exhaustive

Figure 3. Four 128×128 synthesis results with
varying values for k, using Fig. 2 (left) as input
(initial patch size = 32×32).

We furthermore allow the user to precompute the knn
data structure using grayscale instead of RGB feature vec-
tors, which works fine for images with sparse histograms.

5. Results

As expected, offloading the exhaustive search procedure
to a precomputation step relieves the runtime synthesis al-
gorithm of this effort. Table 1 shows some results/timings
using our Matlab implementation including adaptively sub-
divided patches to control the initial amount of error in the
overlap regions (see [7]). As mentioned in Section 2, an
exhaustive search during overlap re-synthesis scales badly
with the input texture size. This can be verified from the
synthesis times in column 2 of Table 1, where the result
in each row is of size 192×192 with varying input texture
sizes. Columns 3 and 4 demonstrate that the use of a fixed
size candidate list leads to synthesis times, which are linear



exhaustive search, k-coherence search, k-coherence search,
input neighborhood n = 7×7 neighborhood n = 3×3, neighborhood n = 5×5,

k = 5 k = 11

scales
64×64

δmax = 0.02 (see [7])
∆max = 0.05 (see [7])

pre: 0 sec.
synth: 238 sec.

pre: 6+3 sec.
synth: 226 sec.

pre: 6+4 sec.
synth: 427 sec.

stone wall
200×200

δmax = 0.02 (see [7])
∆max = 0.03 (see [7])

pre: 0 sec.
synth: 985 sec.

pre: 247+28 sec.
synth: 178 sec.

pre: 247+37 sec.
synth: 350 sec.

Table 1. Some timings on an Athlon xp2100 using Matlab. Each result is 192×192 (initial patch size
of 32×32). The precomputation time is pre: f + s, where f is the time spent assembling the feature
vector set, and s is the time for applying PCA to the RGB feature vectors and then performing the
actual knn search.

in k and n and nearly independent of the input texture size.

6. Conclusions and Future Work

Our proposed method works for any patch layout or
shape. The results are of equal quality when compared to
exhaustively searching for the best pixel to replace invalid
pixels in the overlap region, however, is significantly faster
for large input textures (i.e. the synthesis time is indepen-
dent of input texture size). Given this improvement, we see
several avenues for further research.

During precomputation we currently use all feature vec-
tors for PCA, which, depending on the input texture’s vari-
ation, is possibly not necessary for good results.

Our acceleration is analyzed using an existing, prototype
Matlab implementation. An equivalent C/C++ implementa-
tion of the algorithm would achieve significant speedup.

Zelinka and Garland’s Jump Map [11] is exceptionally
fast, so using their algorithm for overlap re-synthesis could
result in even greater acceleration.

References

[1] M. Ashikhmin. Synthesizing natural textures. In Symposium on Interactive 3D
Graphics, pages 217–226, 2001.

[2] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles for image and
texture generation. In Proceedings of ACM SIGGRAPH 2003, pages 287–294.
ACM Transactions on Graphics, 2003.

[3] A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and trans-
fer. In E. Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings,
pages 341–346. ACM Press / ACM SIGGRAPH, 2001.

[4] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling.
In IEEE Conference on Computer Vision, pages 1033–1038, 1999.

[5] V. Kwatra, A. Schdl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: Image
and video synthesis using graph cuts. In Proceedings of ACM SIGGRAPH 2003,
pages 277–286. ACM Transactions on Graphics, 2003.

[6] L. Liang, C. Liu, Y. Xu, B. Guo, and H.-Y. Shum. Real-time texture synthe-
sis by patch-based sampling. ACM Transactions on Graphics, 20(3):127–150,
2001.

[7] A. Nealen and M. Alexa. Hybrid texture synthesis. In Rendering Techniques
2003, 14th Eurographics Workshop on Rendering, pages 97–105. Eurographics
Association, 2003.

[8] C. Soler, M.-P. Cani, and A. Angelidis. Hierarchical pattern mapping. In SIG-
GRAPH 2002 Conference Proceedings, July 2002.

[9] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H.-Y. Shum. Synthesis of
bidirectional texture functions on arbitrary surfaces. In SIGGRAPH 2002 Con-
ference Proceedings, pages 665–672. ACM Press, 2002.

[10] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector
quantization. In SIGGRAPH 2000 Conference Proceedings, pages 479–488.
ACM Press/Addison-Wesley Publishing Co., 2000.

[11] S. Zelinka and M. Garland. Towards real-time texture synthesis with the jump
map. In Proceedings of the 13th Eurographics workshop on Rendering, pages
99–104. Eurographics Association, 2002.


