
Exploring Game Space Using Survival Analysis

Aaron Isaksen Dan Gopstein Andy Nealen
aisaksen@nyu.edu dgopstein@nyu.edu nealen@nyu.edu

NYU Game Innovation Lab1

ABSTRACT
Game designers adjust game parameters to create an optimal ex-
perience for players. We call this high-dimensional set of unique
game variants game space. To help designers explore game space
and better understand the relationship between design and player
experience, we present a method to find games of varying diffi-
culty. Focusing on a parameterized version of Flappy Bird, a pop-
ular minimal score-based action game, we predict each variant’s
difficulty using automatic play testing, Monte-Carlo simulation,
a player model based on human motor skills (precision, reaction
time, and actions per second), and exponential survival analysis of
score histograms. Our techniques include searching for a specific
difficulty, game space visualization, and computational creativity to
find interesting variants. We validate our player model with a user
study, showing it is effective at predicting game difficulty.

Keywords
player modeling, Monte-Carlo simulation, game design, automated
play testing, dynamic difficulty, game space, gameplay metrics,
survival analysis, computational creativity, motor skills, Flappy Bird

1. INTRODUCTION
As game designers, we use adjustable game parameters to tune

a game to achieve a desirable player experience. Each unique pa-
rameter setting creates a new game variant. We refer to this high-
dimensional space of game variants as game space. A point in
game space is a specific vector of game parameters; these settings
directly affect the player, enemies, or the level generation [39]. Ex-
ploring game space to find specific settings for an optimal experi-
ence is a considerable challenge, and we aim to better understand
the relationship between game parameters and player experience.

In this paper, we examine how game parameters, without chang-
ing the game rules, can affect a game’s difficulty. For example, we
would expect a variant with fast enemies to be more difficult than
one with slow enemies, even if both versions are otherwise identi-
cal and have the same rules. Automatically creating new rules [3, 5,
11, 31, 38] is a related problem, but parameters alone have a signif-

Figure 1: We explore game space by simulating game variants
and estimating their difficulty using survival analysis.

icant impact on game feel [34]: getting Mario’s jump to feel right
is more about adjusting parameters than coding accurate physics.

The set of all game variants for a specific game is high-dimensional
and often impossible to search exhaustively – imagine adjusting
hundreds of independent control knobs to search for the perfect
game. We reduce the search space by focusing on game variants
that only change parameters, not the larger class of variants that in-
clude changes to game rules. While tuning games, designers rely on
intuition, experience, and user feedback to iteratively search game
space. The designer must estimate player skill, set game parame-
ters, play test, evaluate player experience using gameplay metrics,
revise parameters, and iterate until the game reaches an appropri-
ate level of difficulty [7, 9]. When a designer becomes an expert
at their own game, they can lose perspective on how their game is
experienced by new players. It can also be difficult for designers to
break out of local optima and explore creative new regions of game
space. Automated play testing [20, 47] and visualization [42] help
with this process, guiding designers in their exploration to create
games best suited to individual skill levels and play styles [10].

We present a methodology for tuning game parameters that can
be used by everyday game designers without requiring human play

1game.engineering.nyu.edu/exploring-game-space



testers. Our general approach is shown in Figure 1. To explore a
new game variant, we select a parameter vector from a valid range
of values. Using this vector, we generate a level and simulate play-
ing it using an AI that models human imprecision. We repeat the
Generate and Simulate steps until we have a reliable histogram of
scores for the game variant. We then analyze the histogram using
exponential survival analysis [14, 27] to find the decay rate of the
exponential distribution. Faster decay predicts a harder game as
higher scores are increasingly less likely than lower scores.

For our research, we decided to work with a game that is pop-
ular and has relatively few adjustable game parameters. We chose
Flappy Bird [21] because it is a commercial and critical success,
spawning hundreds of similar games, and the rules are simple to
implement and understand. In Flappy Bird, a player must fly a con-
stantly moving bird without crashing into a series of pipes placed
along the top and bottom of the screen (see Figure 2). Each time
the player taps the screen, the bird flaps its wings, moving upward
in an arc while gravity constantly pulls downward. Each time the
bird passes through a pipe gap without crashing, the player scores a
point. Part of the appeal for Flappy Bird is the comically high diffi-
culty level, especially when typical casual games are easy and for-
giving. Flappy Bird could have been much easier with a few small
adjustments, such as increasing the gap between pipes or decreas-
ing the width of the pipes, but these would have led to different,
potentially less rewarding play experiences.

Accurately simulating game play requires an understanding of
how players react to game events: this is the process of player mod-
eling [30]. Our player model assumes that much of the difficulty
in simple action games is due to human motor skill, specifically
precision and reaction time [15]. Since we use a static, objective,
simulation-based player experience model [46], we do not need to
analyze prerecorded human play sessions of the specific game to
train our player model, and do not rely on live players to estimate
the current level of challenge or fun [8, 12, 16, 22, 36, 47].

Our goal is to make the simulator play like a human (novice, av-
erage, or skilled), not play with superhuman ability (as might be
required for some parameter settings of Cloudberry Kingdom, a
game that exposes its adjustable game parameters to players when
generating platformer levels [24]). As long as the model properly
predicts human perception of difficulty, it fits our purposes. In min-
imal, well-balanced, and compelling action games like Flappy Bird
or Canabalt [28], the player takes a relatively obvious path, but
executing that simple path is challenging [19]. In this paper we ex-
amine a game with simple path planning and without enemies, so
we can focus on the player’s ability to control the game – without
analytical evaluation of possible player movement [4], multi-factor
analysis of player or enemy strategies [10], dynamic scripting of
opponents [32], building machine learning estimators [36, 29, 45],
or evaluating design via heuristics [6].

2. GAME SPACE
Action games are defined by rules and parameters, designed to

produce a specific player experience through challenges. Predicting
the qualitative experience is hard, but we can examine the distribu-
tion of final scores to predict a quantitative difficulty of the game.
Throughout this paper, we refer to this measured difficulty as d.

The rules are implemented in code and define concepts like “if
the bird collides with the pipe, the game ends.” Because we keep
the rules fixed, we can represent our game space as a high-dimensional
space over the set of parameters used to tune the game.

We have chosen to use the following parameters for our imple-
mentation of Flappy Bird (see Figure 2). The original Flappy Bird,
and all our variants, have a constant value for each parameter dur-

Figure 2: In Flappy Bird, the player must navigate the bird
through a series of pipes without crashing. We modify the la-
beled parameters to generate unique game variants.

ing a play session since the game does not change as the player
progresses. In general, game parameters can change as the player
gets further into a level (for example, in Canabalt the game speeds
up as the player progresses) but we did not explore variants with
dynamic parameter values as they would require a change in the
rules that define Flappy Bird.

Pipe Separation ps – More distance between pipes is easier to
play, giving more time to react to changing gap locations.
Pipe Gap pg – The distance between the upper pipe and the lower
pipe. Narrower gaps are more difficult as the bird has less room to
maneuver, requiring better motor skills.
Pipe Width pw – Wider pipes increase difficulty as the bird spends
more time in the narrow pipe gap.
Pipe Gap Location Range lr – The pipe gap locations are uni-
formly randomly distributed in a range somewhere between the
ceiling and the floor. Larger ranges are harder because there is
more distance to travel between a high gap and a low gap.
Gravitational Constant g – Acceleration of the bird in the y di-
rection, subtracted from the bird’s y velocity each frame. Higher
gravity causes the bird to drop faster, lowering the margin of error.
Jump Velocity j – When the bird flaps, its vertical velocity is set
to j, making it jump upward. Higher velocity makes higher jumps.
Bird Velocity v – Speed at which the bird travels to the right (al-
ternately, the speed at which pipes travel to the left).
World Height H – Distance between ceiling and floor. In Flappy
Bird, this is defined by the display resolution.
Bird Width and Height bw ,bh – Size of the bird’s hit box. The
wider and taller the bird, the harder it will be to jump through gaps.

By varying these parameters within sensible ranges, we can gen-
erate all variants of Flappy Bird that use the same set of rules. Many
of these parameters have constraints; for example, they all must be
positive, and Bird Height bh can not be larger than Pipe Gap pg or
the bird can’t fit through the gap.

3. PLAYER MODEL
We begin with a model of a player with perfect motor skills – a

perfect player with instantaneous reaction who would never lose at
the original Flappy Bird. Given a version of Flappy Bird defined
by its game parameters (a single point in game space as defined in
Section 2), we create an AI that finds a path through the pipes with-



Figure 3: Modeling precision by randomly adjusting the time
the simulated player jumps. Moving the jump earlier or later
can cause the bird to crash into the lower pipe or upper pipe.

out crashing. Instead of using an A* planner that finds the shortest
path, we chose to use a simpler AI which performs well but is easier
to implement and faster to run. Each time the bird drops below the
target path, the AI immediately executes a flap (which sets vertical
bird velocity vy instantly to jump velocity j). Whatever AI is used,
it should play with very good performance on solvable levels, and
should mainly only fail on impossible levels, such as a level with a
tiny pipe gap where the bird cannot fit through.

We then extend the AI to perform less well by modeling the main
components of human motor skill which impact difficulty in these
types of action games: precision, reaction time, and actions per
second. Adjusting these values lets us model different player types,
since novices react slower and are less precise than experts.

3.1 Player Precision
When a player plans to press a button at an exact time, they

execute this action with some imprecision. We model this error
as a normal distribution with standard deviation proportional to a
player’s imprecision. Imprecision in an inherent trait, but is also re-
lated to the time a subject has to react to an event, called the speed-
accuracy tradeoff: the less time they have to react, the less accu-
rately they will respond [43]. For simplification, our player model
assumes precision is an independent variable and not dependent on
bird speed. In our user study (Section 7), we measured precision
as an error with standard deviation ranging between σp = 35.9 ms
and σp = 61.1ms, and use this range for game space exploration.

We model imperfect precision in our AI by calculating an ideal
time t to flap, then adding to t a small perturbation ε , drawn from
a random normal distribution with 0 mean and standard deviation
σp , as shown in Figure 3. By increasing the standard deviation σp ,
the AI plays less well and makes more errors, leading to a higher
difficulty estimate (see Section 6.1.1 and Figure 6 for the impact of
varying precision). Reducing σp to 0 ms lets us test if a level is
solvable by the AI without taking into account human error.

3.2 Reaction Time
When a player sees a new pipe show up on the screen, it takes

some time to react. The speed of the player’s reaction is influenced
by factors inherent to the system [13], as well as factors affecting
the player themselves [35]. To identify an average reaction time to
expect from people playing our games, we measured a mean delay
τ = 288 ms in our user study (Section 7).

We constrain the AI to react only after it has observed a new
pipe for τms of simulated time. We found in our Flappy Bird ex-
periments the delay has minor impact on estimating difficulty, and
mostly matters for bird speed settings that are exceedingly fast.

3.3 Actions Per Second
Humans can only perform a limited number of accurate button

presses per second. In our user study, we measured an average 7.7
actions per second. We also limit our AI to this same number of ac-
tions per second. We simplify our model by keeping this constant,
although a more complex model would account for fatigue, since
players can’t keep actions per second constant for long periods.

4. ESTIMATING DIFFICULTY
Given our game space and player model, we now present our

methodology for estimating difficulty. We explore points in game
space by performing randomized simulations and examining the
distribution of scores. Our goal is to describe the perceived diffi-
culty of a game by a single value d ∈ [0,1], related to the difficulty
estimated by an AI using a player model with predefined settings
for reaction time, precision, and actions per second.

Impossible games (d = 1) are those games which can’t be played
successfully by any player. This can happen, for example, if the
jump velocity j is much weaker than gravity g, or if the pipe gap pg
is so small that the bird can’t fit through the gap. Impossible games
that appear playable can also occur with some parameter combina-
tions: for example, with high bird velocity bv , low gravity g, and
high pipe gap location range lr , it is often impossible to drop in
time from a high gap to a low gap. We eliminate these games by
first verifying that a perfect player with precision standard devia-
tion σd = 0ms can reach a goal score with high frequency.

Playable games (d < 1) are those games which can be played
successfully by some players. In our experiments, we found empir-
ical evidence that the set of playable Flappy Bird games is a single
connected space. In general, this is not a requirement for games
and may be disjoint for more complicated games.

Trivial games (d = 0) exist where all players will be able to
achieve the goal score, assuming a reasonable amount of effort. For
example, this can arise if the pipe gap pg is large. The player still
needs to pay attention and actively tap the screen, but the game is
trivial as long as they are actively participating.

Equal Difficulty Games are points in the game space where the
difficulty is approximately equal. These points can be viewed as a
(possibly disjoint) subspace: all games in the subspace for a fixed
value of d will have the same difficulty, and points near it will have
similar difficulties. By finding distant points within such a sub-
space, we explore a variety of games that are of equal difficulty.

The process to calculate d is composed of three steps: 1) Gen-
erate - build a new game variant based on the given parameters,
2) Simulate - use an AI to play the game with human-like behav-
ior, and 3) Analyze - examine the resulting score histogram using
exponential survival analysis to estimate the difficulty d of the sim-
ulated game. Generate and Simulate steps are repeated until we
have a stable score distribution for measuring in the Analyze step.

4.1 Generate
Each simulation begins by taking a parameter vector p and gen-

erating a new game variant. This involves placing the bird and pipes
in their starting positions and randomly distributing the pipe gaps.
In Figure 4, we show two different generated game variants.

Because the levels are generated using a random process, it is im-
portant to generate a new level each time the AI runs, even though
the parameters p do not change. Otherwise, if the same random
layout of pipe gaps is used repeatedly, artifacts can arise in the
score distribution caused by a particular placement of the gaps. For
example, the gap locations can randomly come out approximately
equal for a section of the level, making that section easier. These
artifacts are averaged out by generating a new level each time.



Figure 4: Two different levels created by the Generate step
given different parameter sets. More simulations complete the
second version, so it has an easier estimated difficulty. The red
lines indicate the target location for the AI to flap.

4.2 Simulate
Given the level created in the Generate step, we use a simple

heuristic to find a path through the pipes by flapping when the bird
reaches a line in the lower half of the gap (these lines are drawn
in red in Figure 4). At each frame of the simulation, we predict
the next time t in the future when the bird will drop below this
ideal flapping location – the ideal player would flap at exactly this
time t. By reducing or increasing the standard deviation σp of
our precision model (Section 3.1), the AI plays more or less well.
We quickly check if a variant is impossible by using σp = 0ms
on a limited number of simulations, and only continue testing if a
majority of the these simulations score highly. It is important to
note that our AI does not need to be perfect to detect if a game is
possible, as the AI with σp = 0ms performs far better than humans.

To keep the AI from flapping faster than a human could tap, t
is limited by the number of actions per second. We also limit the
AI lookahead to only use information that has been visible on the
screen for at least τ (the time it takes for a player to react to a new
event). In our experiments, τ did not have much effect except in
extreme situations where humans would perform poorly anyway.

For each simulation, we get a score s, equal to number of pipes
that the AI passes before crashing, and we record each score s in
a histogram S. If the AI reaches a goal score smax , we terminate
the run so we do not get stuck simulating easy games where the
AI will never crash. Although Flappy Bird can theoretically go
on forever, human players tire or get distracted and will eventually
make a terminal mistake, but the AI can truly play forever unless we
enforce a maximum score. We call simulations with s < smax lost,
and simulations with s = smax won. We discuss how to set smax

in Sec. 5.2. The Generate and Simulate steps are run repeatedly
until we have enough samples to adequately analyze the histogram.
We calculate the proper number of simulations in Sec. 5.1.

4.3 Analyze
After running the Generate and Simulate steps, we examine the

distribution of scores, as shown in Figure 5. If a player crashes
into pipe x or the ground immediately before it, they will achieve
a score of s = x − 1 (the first pipe is x = 1, giving a score s =

0). Using exponential survival analysis, we model the probability
that a player crashes into pipe x or the ground before it with an
exponential distribution and its cumulative distribution function:

P(x) = λe−λx (1)

P(X ≤ x) = CDF(x) = 1 − e−λx (2)

Because the scores from our simulation follow an exponential
distribution, we describe the shape of the histogram by the decay
rate λ. This one value λ defines the survivability of the game vari-
ant. Distributions with higher λ will decay faster and are more dif-

Figure 5: The score distribution is exponential (left). Faster de-
cay is more difficult, so the red line is a harder variant. We take
the log of this distribution (right) and weighted least squares fit
a line to calculate the decay constant: steeper is more difficult.

ficult: a higher proportion of simulations die on each pipe. Lower
values of λ imply the player is more likely to survive each pipe,
meaning the game is easier. Since it is harder to reach higher scores
than lower scores, P(x) is non-increasing, so λ ≥ 0.

The cumulative distribution function in Eq. 2 is the total proba-
bility of crashing into any pipe from 1 to x. Based on λ, we define
difficulty d as CDF(x = 1), the theoretical probability of crashing
into the first pipe or the ground before it:

d = 1 − e−λ (3)

With this definition, difficulty d varies between 0 (trivial) and 1
(impossible), and 1 − d is the expected fraction of simulations that
make it through each pipe.

We employ two methods to find λ and therefore d: via survival
analysis of the lost simulations (Section 4.3.1) and survival analysis
of the won simulations (Section 4.3.2).

4.3.1 Finding d from Lost Simulations
To find d from the lost simulations where the AI died before

reaching the goal score smax and thus achieved a score s < smax ,
we take the natural log of P(x) in Eq. 1 to get:

ln (P(x)) = ln(λ) − λx (4)

We substitute y = ln (P(x)), m = −λ, and b = ln(λ) to see Eq. 4
fits the linear form y = mx + b. We then use linear regression to
find m and therefore λ. We ignore b because this is only a scale
factor to make the probability histogram sum to 1.

Using the scores recorded during the repeated simulations, we
know the frequency of crashing into each pipe x, which is the num-
ber of simulations that achieved a score of s = x − 1. We get prob-
ability P(x) by dividing each bucket count by the sum of all buck-
ets. We then fit a line to this log-normal distribution and extract
the slope m = −λ (see Figure 5). We use the R MASS library [25,
41] function rlm with weighted least squares fit based on the fre-
quency in the original score distribution, so that we do not give too
much weight to the low probability but high valued scores (which
can cause overfitting after log transformation).

When fitting, we must not include the histogram bucket for smax ,
which contains all the scores for every simulation that passes suc-
cessfully through smax pipes and terminates the simulation for that
single iteration. Including this bucket would distort the linearity of
the lost simulations histogram.

4.3.2 Finding d from Won Simulations
For easy games, most of the simulations will go on forever unless

they are terminated at some goal score smax . Easier games will



have most scores in the bucket for smax , so we also need a solution
for finding d that relies on the won simulations, where s = smax .
We take a different approach that uses the cumulative distribution
function and counts the ratio of won to total simulations.

Let ns be the number of simulations and H[smax ] be the recorded
histogram value for the number of simulations that scored smax .
H[smax ]/ns is the fraction of games that reached this score and
did not crash into any pipes. From Eq. 2, CDF (smax − 1) is the
fraction of games that crashed into any pipe, and 1−CDF(smax−1)
is how many games did not crash. In survival analysis, 1−CDF(x)
is called the survival function S(x). Putting this together, we have:

S(smax − 1) = 1 − CDF(smax − 1) =
H[smax ]

ns
= e−λ (smax−1)

And solving for λ gives us:

λ =
− log (H[smax ]/ns )

smax − 1
(5)

Since the lost simulation approach works best with a difficult
variant, and the won simulations approach works best with an easy
variant, we combine the two approaches using a weighted average.
We weight the lost simulations result by the fraction of samples
with s < smax , and the won simulations result by the fraction of
samples with s = smax .

5. IMPLEMENTATION

5.1 Number of Simulations
When running randomized algorithms, it is essential to have a

high number of samples to avoid artifacts: too few samples and the
estimate of difficulty will be highly variable, while too many sam-
ples requires longer simulation time. We can find a good number of
simulations ns by running an experiment k times for a fixed point
in game space, and examining the resulting distribution of d. Each
experiment will give a slightly different value of d due to random-
ness in the stochastic simulation. After k trials, we measure the
mean µd and standard deviation σd . As k increases, µd will trend
towards the true difficulty value d′, giving us a confidence inter-
val that our simulation correctly estimates the difficulty with some
given probability. By increasing ns the standard deviation σd will
decrease, tightening the confidence interval. Similar to Probably
Approximately Correct (PAC) learning bounds [1], we choose a
bound ε such that with chosen probability δ all estimates of d will
fall within ε of the true value d′. Using the definition of a CDF of
a normal distribution, we find:

σd ≤
ε

√
2 erf-1(δ)

(6)

We then increase ns until the resulting σd is under the upper
bounds defined by our accuracy thresholds ε and δ. Table 1 shows
for targeting varying thresholds determines the standard deviation,
number of simulations required, and simulation time for a single
core on a 2.2 GHz Intel Core i7.

5.2 Maximum Score
We need to terminate our simulations at a maximum score smax ,

so that easy games do not go on forever. In addition, because our
lost simulations data properly fits a log-linear model, we do not
need many histogram buckets to get an accurate estimate. Fewer
buckets also lead to faster simulations because the simulation ends
earlier. However, we still want to ensure enough data points for
both the lost and won calculations. Since accuracy of the measure-
ment of d by lost and won simulations is affected by the number of

ε δ σd ns time
.01 .95 0.005102 ∼ 5000 60.28 ms
.01 .99 0.003882 ∼ 9000 101.1 ms
.01 .999 0.003039 ∼ 12000 127.4 ms

.005 .95 0.002551 ∼ 20000 214.0 ms

.005 .99 0.001941 ∼ 30000 415.7 ms

.005 .999 0.001520 ∼ 50000 584.9 ms

Table 1: Calculating the number of samples ns required in the
Monte-carlo simulation. δ is the probability of being within ε
of the expected mean of d, implying a standard deviation of σd .
More samples takes longer but is more accurate.

buckets in the histogram, the goal is not necessarily to use a mini-
mal or maximal value of smax . Low values of smax make the lost
simulations method less accurate, and high values of smax make
the won simulations method less accurate.

Using a similar approach to the previous section, we target a spe-
cific accuracy and search for a value of smax such that the change
in difficulty estimate is bounded by ε of the expected mean of d.
Using smax = 20 gave us a sufficient tradeoff between repeata-
bility (σd < .0025), total simulation time, and balance between
accuracy in lost and won simulation estimates of d.

5.3 Anomalies
In some variants, we noticed that the first gap is easier for the AI

than other gaps. This can be seen with the first gap having a lower
failure rate. Before any pipes arrive on the screen, the most sensi-
ble action is for the AI to hover around the middle of the screen,
so at worst the bird only needs to travel half of the gap location
range lr /2. But for the rest of the game it can be as much as the
full gap location range lr , if a low gap is followed by a high gap.
Due to our model relating difficulty to the decay rate of the expo-
nential distribution, we ignore the unique first gap and fit the decay
to the remaining gaps for a more accurate estimate of d.

Scoring in Flappy Bird is usually measured at the middle of the
pipe – the bird only needs to pass through .5 pipes to get a score
of 1, but must pass through 1.5 pipes to get a score of 2. We miti-
gate this by shifting our scoring location to the end of the gap.

Finally, if the bird starts at the same distance from the first pipe
during each run, a beating effect can occur in the score distribu-
tion. This happens because some times the player must jump twice
within a pipe while other times they only need to jump once. We
eliminate this effect by starting the bird at a random x offset on
each run of the simulation. This smooths out the beating effect,
removing it from the final distribution.

6. EXPLORING GAME SPACE
We require efficient algorithms to explore the high-dimensional

space of possible games – an exhaustive search over all parameters
will not work. Through intelligent sampling and visualization, we
can gain insight about the game (Sec. 6.1), adjust parameters to
target a specific difficulty (Sec. 6.2), or generate new versions that
vary significantly from the region of game space we are currently
exploring (Sec. 6.3).

6.1 Sampling and Visualization Methods
We use the following techniques to sample and visualize diffi-

culty changes as we explore different points in game space. We
start this process by picking a point p in game space, for example
by selecting the parameters that define the original Flappy Bird. We
extracted the original parameters by examining video capture of the



Figure 6: Increasing pipe gap pg decreases difficulty. Each
line shows a different setting for player precision σp . Lighter
lines plot lower precision, modeling poorer performance, so are
more difficult for the player model.

game, measuring distances and sizes in pixels, and performing sim-
ple computer vision background segmentation and quadratic curve
fitting to extract velocity and gravity parameters.

6.1.1 Single Dimensional Sampling
Beginning with the original Flappy Bird, we keep each parame-

ter fixed and vary one at a time, exploring along each 1 dimensional
axis, and sampling at fixed intervals. Figure 6 shows a plot of pipe
gap pg vs difficulty d. Each line uses a different value for player
precision σp . Lighter lines in the figure have a higher standard
deviation, so the AI makes more errors, and the game is more dif-
ficult for the player model. As one expects, the model predicts that
players with less precision will find the same game more difficult
to play, and narrower gaps are harder for everyone.

6.1.2 Two-Dimensional Sampling
Varying in two dimensions shows dependent parameters, and can

help designers find interesting relationships between dimensions of
game space. We visualize these results using dot plots, displaying
varying difficulty by the radius and color saturation of each point.

For example, we see in Figure 7 that jump velocity j and gravity
g are dependent. When gravity is too high or low relative to jump
velocity, the bird crashes into the floor or ceiling. In the middle,
gravity and jump velocity are balanced, and we see as they increase
together, the game gets more difficult – faster reaction times are re-
quired as the bird is moving rapidly up and down. Lower values of
gravity and jump velocity give the player more time to react and are
easier to play. Holes and islands are due to stochastic simulation,
and can be reduced with a larger number of simulations ns .

In Figure 8 we see the hyperbolic-like relationship between bird
horizontal velocity vx versus pipe gap location range lr . As the
bird moves faster, there is less time to aim for the next pipe gap. As
we increase the gap location range, the bird must on average travel
further to clear the pipes, so the player requires more time to adjust.

Our best visualization results came from using hexagonal sam-
pling. We also tried evenly spaced rectangular grids, which are
easy to implement and work well with standard contour plotting
algorithms, and stratified sampling, which avoids clumping from
uniform sampling, ensures that the entire space is well covered and
eliminates aliasing artifacts from grid sampling.

6.1.3 High-Dimensional Sampling
Proceeding to higher dimensions, we sample the entire space by

varying all the parameters without keeping any fixed. Latin Hy-

Figure 7: Sampling game space in two dimensions, jump veloc-
ity j vs gravity g, shows a narrow band of playable games.

Figure 8: Sampling in two dimensions, lr pipe gap location
range vs vx horizontal bird velocity. High speeds require a
lower pipe range, so the player has enough time to react to the
varying gap locations.

percube Sampling [33] provides us with well distributed stratified
sampling that covers the entire space. This is useful for sampling,
but is not useful to visualize beyond two-dimensions.

With high-dimensional sampling, we can then approximate and
reconstruct the difficulty function at any point in game space by
using Moving Least Squares (MLS) [18], without running the sim-
ulation. This technique is useful if the simulation is slow, either (a)
offline when searching for good parameters or (b) online during dy-
namic difficulty adjustment where there is no time to run expensive
simulations. We experimented with MLS reconstruction, showing
that it performed well, but our original simulation ran fast enough
we did not need to use it during search or visualizations.

6.2 Exploration via Optimization
Global optimization algorithms are designed to efficiently search

parameter space to find the optima of a function. We use opti-
mization to find the parameters that will give a specific difficulty
dtarget by searching the parameter space to find p using:

arg min
p

√(
d(p) − dtarget

)2

where d(p) is the difficulty of a game with parameters p. Because
we evaluate d stochastically, we are optimizing over a noisy func-



Figure 9: Differential Evolution Optimization helps us search
for a target difficulty. Each point indicates a variant tested to
find the target; X indicates impossible games, Dot size and color
indicates closeness to the target. 280 points were searched to
find a value within .1% of the target d = .3. Three example
games are shown, but every dot represents a unique variant.

tion and can’t use strategies that rely on differentiable functions and
gradients [26]. Differential Evolution [23] is designed for stochas-
tic functions, and the DEoptim optimizer [17] quickly explores
game space find our target with .1% accurracy in approximately
10-20 iterations using the default options for the library. Figure 9
shows points explored to find a specific difficulty of d = .3 for the
user study in Section 7.

Finding all games that match a particular difficulty d is consid-
erably more difficult, as most optimization algorithms aim to find
a single global optimum, not a set of values. One solution is to
use multiobjective evolutionary algorithms [37] which can handle
multiple optima. Another solution is to partition the space using
an n-dimensional octree, and search with DEoptim for an matching
game inside by each cell. If a game is found, the cell is subdivided
and searched recursively. This approach increases in speed as the
cell sizes get smaller, but requires repeated evaluations of the same
space as a cell is subdivided. These search techniques can be sped
up using parallelization [40].

6.3 Computational Creativity
We implement exploratory computational creativity [2, 44] as

the process of finding playable variants that are as different as pos-
sible from existing versions that have already been explored. By al-
lowing the system to vary every design parameter, unique combina-
tions can quickly be explored by the AI and optimizer. Unplayable
levels are invalidated, and the system only returns the games that
can actually be played by humans. The designer then can examine
the unique playable games to find inspiration and new ideas.

Using our system, we have generated interesting and surprising
variants, such as “Frisbee Bird” which has a very different game
feel. This variant, shown in Figure 10, was created by allowing the
optimizer to vary every design parameter, including speed, player
width, player height, jump velocity, gravity, pipe distance, pipe
width, and pipe randomness. The optimizer returned a game with
a wide flat bird which moves horizontally very fast but slow verti-
cally and requires short bursts of rapid presses followed by a long
pause while the bird floats in the air. This unexpected variant, dis-
covered by our system while using the optimization algorithm, still

n agree % agree n agree % agree
Pair d(A) d(B) perceived perceived score score
1 0 .1 18/20 90% 16/20 80%
2 .3 .2 17/20 85% 15/20 75%
3 .3 .4 8/20 40% 13/20 65%
4 .1 .2 16/20 80% 15/20 75%
5 .5 .4 15/20 75% 16/20 80%
6 .1 .3 18/20 90% 20/20 100%
7 .4 .2 17/20 85% 16/20 80%

TOT - - 109/140 77.9% 111/140 79.3%

Table 2: Our predictions generally agree with players’ evalua-
tion of perceived difficulty and with their actual scores. Only
in one case (Pair 3) do we disagree, and in that situation, the
players perceive the pair oppositely to their own performance.

relies on the mechanics and rules of the original but is a signifi-
cantly different play experience.

To ensure that we have covered the entire game space to find
unique variants, we can use stratifed sampling which ensures sam-
pled points are distant from each other in parameter space.

7. USER STUDY
We now compare our difficulty predictions with difficulty rank-

ings obtained through human play testers. Our user study is com-
posed of 3 stages: Questionnaire, Ability Measurement, and Game
Difficulty Comparison. Each part is performed in a web browser;
participants are monitored to ensure they complete the entire study
correctly. Our questionnaire asks for gender, age, game playing
experience, and exposure to Flappy Bird games and its clones.

In the Ability Measurement stage, we measure precision, reac-
tion time, and actions per second. We measure the standard devi-
ation of precision σp by asking participants to tap a button when
a horizontally moving line aligns with a target. We repeat the test
20 times at 3 different line speeds. The standard deviation of the
measured time error for each speed is used in our player model (see
Sec. 3). We measured precision to range between σp = 35.9ms for
the slowest line speeds and σp = 61.1ms for highest line speeds,
verifying the speed-accuracy tradeoff [43].

To measure reaction time, the user is asked to press a button as
soon as they see a horizontally moving line appear on the right side
of the window. The average delay in time between when the line
first shows up and the user presses the button is τ. We measured
this average value as τ = 288ms, which is in line with classical
reaction time measurements [13]. We do not currently use reaction
time standard deviation as we found the reaction time does not have
a large impact on our AI for playable games.

To measure actions per second, the user rapidly presses a button
for 10 seconds. The mean was 7.7 actions per second. This is an
upper bound, as players can not be expected to perform this fast
with accuracy, and some testers would focus so intently on tapping
the button that they would not be able to play accurately at that rate.

In the Game Difficulty Comparison stage, we ask each partici-
pant to play 7 pairs of game variants and to rate the difficulty of
each game relative to the other in the pair (see Table 2). For ex-
ample, variant 1A is compared with 1B, 2A is compared with 2B,
etc. We also measure the mean score each player achieves on each
variant. The user can switch between variants in each pair and can
play each variant as many times as they want. For each pair, they
are asked to compare the games on a 7-point scale: “A is {much
easier, easier, a little easier, the same, a little harder, harder, much
harder} than B.”



Figure 10: “Frisbee Bird” was unexpectedly created by our system, an example of computational creativity. We show 6 simulated
paths with jump points indicated by triangles. The player is very wide and thin, with weak jump velocity and gravity that gives the
feeling of floating. We have manually tweaked the generated parameters for better visualization.

To create the pairs, we used the techniques of Section 6.2 to gen-
erate 6 unique variants with varying difficulty between d = 0 and
d = .5. If d(A) < d(B), then we predict that A is easier than B. To
limit the number of changing variables, we only changed gravity g
and jump velocity j while fixing all other parameters. Gravity and
jump velocity are interesting variables since they need to be experi-
enced in-game to understand how the variant feels, and they would
normally require design iteration and play testing to set correctly.

For each variant pair, we compare our prediction with what each
participant rated more difficult, and their actual performance on
each variant, as shown in Table 2. We note if the participant (a)
agrees or disagrees with our algorithm’s prediction and (b) achieves
a higher mean score on the variant predicted to be easier. Since
every pair has a different predicted difficulty, if a user indicates
“same” we say they disagree with our prediction. We tested on 20
users and found our population agreed with our prediction 77.9%
(109/140) of the time when asked, and agreed with our prediction
79.3% (111/140) when comparing mean scores. Both are highly
significant under a binomial test. However, some pairs have more
agreement than others, as seen in Table 2. In particular, Pairs 1 & 6
have strong agreement, and we agreed with the majority in all cases
except one. Pair 3 stands out in that participants performed worse
on the variant they perceived to be easier, and more investigation
is needed to better understand this case as our model provides no
explanation for this behavior.

8. DISCUSSION
In this paper, we argue that using player modeling and survival

analysis helps us better understand the relationship between game
parameters and player experience in minimal action games like
Flappy Bird. The algorithms presented here are not difficult to
implement and can be used by game designers to tune games and
explore parameter variations. Even if not using optimal methods,
designers can implement a simple AI that makes human-like errors
and explore their own game designs.

Our approach is focused on modifying game parameters for an
existing game, and therefore explores a subset of game variants
where only the parameters change. We do not claim to explore the
larger class of variants created by adding or subtracting rules.

The framework presented here can be used for many types of
games, not just simple action games like Flappy Bird. Given any
parameterizable game defined with a vector of game design param-
eters, these general methods can be used to explore game space:
start with a vector that defines a game variant, test the variant with
an AI player model that makes human-like mistakes, evaluate the
AI’s performance, adjust parameters, and then repeat with a new
variant. However, the player model presented primarily models
dexterity, player accuracy, and timing errors: therefore it is only
suited for action games where difficulty is determined by motor
skill, not by path planning or strategic decisions.

There is future work to be done on improving the accuracy of
our player model. For example, increased time pressure decreases
a player’s precision, so precision is not entirely independent from
the other game space parameters. Future extensions should explore
a dynamic player model which adjusts accuracy based on the speed
at which the player must react to challenges.

Our survival analysis only looks at a single dimension, d, which
describes the score distribution of our simulation. Future work
should explore additional output variables such as time played, op-
timizing for multiple dimensions at once.

In theory, we expect high-dimensional game space to have de-
pendencies which can be squeezed into a lower dimensional space
using model reduction techniques, finding the intrinsic dimension-
ality of a game space. This would reduce the number of knobs
a designer needs to adjust, assuming that there is some lower di-
mensional iso-manifold of estimated difficulty. In addition, lower
dimensional spaces are faster and easier to search.

We aim to provide game designers with tools and methods that
can help them design better games faster. Setting game parameters
can be assisted by algorithms, and take us towards more practical
“computer-aided game design” – designers and computers working
together to craft a better player experience.

9. ACKNOWLEDGMENTS
Special thanks to Katherine Isbister, Julian Togelius, Frank Lantz,

Clara Fernandez-Vara, Bennett Foddy, Charles Joseph Pratt, Chrys-
tanyaa Brown, the NYU Game Center, NYU Game Innovation Lab,
and the anonymous FDG reviewers for their suggestions and com-
ments. We also thank Kyle Christopher Fox for extracting the orig-
inal Flappy Bird parameters, Max McDonnell for providing Flappy
Bird score distribution data, and Trevin Hiebert for helping with
demonstration software. Finally, we would like to especially thank
Dong Nguyen for making Flappy Bird, for giving us permission to
use his images, and for inspiring this research.

10. REFERENCES
[1] E. Alpaydin. Introduction to machine learning. MIT press,

2004.
[2] M. A. Boden. The creative mind: Myths and mechanisms.

Psychology Press, 2004.
[3] C. Browne and F. Maire. Evolutionary game design.

Computational Intelligence and AI in Games, IEEE
Transactions on, 2(1):1–16, 2010.

[4] K. Compton and M. Mateas. Procedural level design for
platform games. In AIIDE, pages 109–111, 2006.

[5] M. Cook and S. Colton. Multi-faceted evolution of simple
arcade games. In CIG, pages 289–296, 2011.



[6] H. Desurvire, M. Caplan, and J. A. Toth. Using heuristics to
evaluate the playability of games. In CHI’04 Human factors
in computing systems, pages 1509–1512. ACM, 2004.

[7] A. Drachen and A. Canossa. Towards gameplay analysis via
gameplay metrics. In MindTrek Conference: Everyday Life
in the Ubiquitous Era, pages 202–209. ACM, 2009.

[8] A. Drachen, A. Canossa, and G. N. Yannakakis. Player
modeling using self-organization in tomb raider:
Underworld. In CIG, pages 1–8. IEEE, 2009.

[9] M. S. El-Nasr, A. Drachen, and A. Canossa. Game analytics:
Maximizing the value of player data. Springer, 2013.

[10] J. Fraser, M. Katchabaw, and R. E. Mercer. A methodological
approach to identifying and quantifying video game
difficulty factors. Entertainment Computing, 2014.

[11] V. Hom and J. Marks. Automatic design of balanced board
games. In AIIDE, pages 25–30, 2007.

[12] R. Hunicke and V. Chapman. AI for dynamic difficulty
adjustment in games. In Challenges in Game Artificial
Intelligence AAAI Workshop, pages 91–96. sn, 2004.

[13] R. Hyman. Stimulus information as a determinant of reaction
time. Journal of experimental psychology, 45(3):188, 1953.

[14] E. T. Lee and J. W. Wang. Statistical methods for survival
data analysis. John Wiley & Sons, 2013.

[15] R. A. Magill and D. Anderson. Motor learning and control:
Concepts and applications, volume 11. McGraw-Hill New
York, 2007.

[16] O. Missura and T. Gärtner. Player modeling for intelligent
difficulty adjustment. In Discovery Science, pages 197–211.
Springer, 2009.

[17] K. Mullen, D. Ardia, D. Gil, D. Windover, and J. Cline.
DEoptim: An R package for global optimization by
differential evolution. Journal of Statistical Software,
40(6):1–26, 2011.

[18] A. Nealen. An as-short-as-possible introduction to the least
squares, weighted least squares and moving least squares
methods for scattered data approximation and interpolation.
URL: http://www. nealen. com/projects, 130:150, 2004.

[19] A. Nealen, A. Saltsman, and E. Boxerman. Towards
minimalist game design. In FDG, pages 38–45. ACM, 2011.

[20] M. J. Nelson. Game metrics without players: Strategies for
understanding game artifacts. In Artificial Intelligence in the
Game Design Process, 2011.

[21] D. Nguyen. Flappy bird. Apple App Store, 2013.
[22] C. Pedersen, J. Togelius, and G. N. Yannakakis. Modeling

player experience for content creation. Computational
Intelligence and AI in Games, 2(1):54–67, 2010.

[23] K. V. Price, R. M. Storn, and J. A. Lampinen. Differential
Evolution - A Practical Approach to Global Optimization.
Natural Computing. Springer-Verlag, January 2006.

[24] Pwnee Studios. Cloudberry kingdom. PC and Console, 2013.
[25] R Core Team. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2014.

[26] A. Redd. Optimising a noisy objective function.
http://www.r-bloggers.com/
optimising-a-noisy-objective-function/, 2013.

[27] H. Rinne. The Hazard rate : Theory and inference (with
supplementary MATLAB-Programs).
Justus-Liebig-UniversitÃd’t, 2014.

[28] A. Saltsman. Canabalt. Apple App Store, 2009.
[29] N. Shaker, G. N. Yannakakis, and J. Togelius. Towards

automatic personalized content generation for platform
games. In AIIDE, 2010.

[30] A. M. Smith, C. Lewis, K. Hullet, and A. Sullivan. An
inclusive view of player modeling. In FDG, pages 301–303.
ACM, 2011.

[31] A. M. Smith and M. Mateas. Variations forever: Flexibly
generating rulesets from a sculptable design space of
mini-games. In CIG, 2010, pages 273–280. IEEE, 2010.

[32] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and
E. Postma. Adaptive game ai with dynamic scripting.
Machine Learning, 63(3):217–248, 2006.

[33] M. Stein. Large sample properties of simulations using latin
hypercube sampling. Technometrics, 29(2):143–151, 1987.

[34] S. Swink. Game Feel. Morgan Kaufmann, 2009.
[35] W. H. Teichner. Recent studies of simple reaction time.

Psychological Bulletin, 51(2):128, 1954.
[36] J. Togelius, R. De Nardi, and S. M. Lucas. Towards

automatic personalised content creation for racing games. In
CIG, 2007., pages 252–259. IEEE, 2007.

[37] J. Togelius, M. Preuss, and G. N. Yannakakis. Towards
multiobjective procedural map generation. In Workshop on
Procedural Content Gen. in Games, page 3. ACM, 2010.

[38] J. Togelius and J. Schmidhuber. An experiment in automatic
game design. In Computational Intelligence and Games,
2008., pages 111–118. IEEE, 2008.

[39] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne.
Search-based procedural content generation: A taxonomy
and survey. Computational Intelligence and AI in Games,
IEEE Transactions on, 3(3):172–186, 2011.

[40] R. A. Valenzano, N. Sturtevant, J. Schaeffer, K. Buro, and
A. Kishimoto. Simultaneously searching with multiple
settings: An alternative to parameter tuning for suboptimal
single-agent search algorithms. In Third Annual Symposium
on Combinatorial Search, 2010.

[41] W. N. Venables and B. D. Ripley. Modern Applied Statistics
with S. Springer, New York, fourth edition, 2002. ISBN
0-387-95457-0.

[42] B. Victor. Learnable programming. Viitattu, 2:2012, 2012.
[43] W. A. Wickelgren. Speed-accuracy tradeoff and information

processing dynamics. Acta psychologica, 41(1):67–85, 1977.
[44] G. A. Wiggins. A preliminary framework for description,

analysis and comparison of creative systems.
Knowledge-Based Systems, 19(7):449–458, 2006.

[45] G. N. Yannakakis and J. Hallam. Real-time game adaptation
for optimizing player satisfaction. Computational
Intelligence and AI in Games, IEEE Transactions on,
1(2):121–133, 2009.

[46] G. N. Yannakakis and J. Togelius. Experience-driven
procedural content generation. Affective Computing, IEEE
Transactions on, 2(3):147–161, 2011.

[47] A. Zook, E. Fruchter, and M. O. Riedl. Automatic playtesting
for game parameter tuning via active learning. In FDG, 2014.


