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Abstract—We present Cicero, a mixed-initiative application
for prototyping two-dimensional sprite-based games across dif-
ferent genres such as shooters, puzzles, and action games. Cicero
provides a host of features which can offer assistance in different
stages of the game development process. Noteworthy features
include AI agents for gameplay simulation, a game mechanics
recommender system, a playtrace aggregator, heatmap-based
game analysis, a sequential replay mechanism, and a query system
that allows searching for particular interaction patterns. In order
to evaluate the efficacy and usefulness of the different features of
Cicero, we conducted a user study in which we compared how
users perform in game debugging tasks with different kinds of
assistance.
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I. INTRODUCTION

Almost fifteen years ago, Jonathan Blow wrote an article
entitled “Game Development: Harder Than You Think”, in
which he discussed the complexities of building, managing
and evolving a game[1]. This complexity has only increased
with new technologies and methods that have arisen due to
new developments in fields like graphics, physics, networking,
social media and many others. Since Blow’s publication, we
have seen the rise of mixed-initiative tools, a hybrid in which
humans and artificial intelligence (AI) work together to solve
specific problems. At the same time, the game industry has
became one of the most diverse industries in the world with
segments based on disparate platforms (mobile, consoles, web,
etc.), diverse customers (children, teenagers, adults, the elderly,
etc.) and even different goals (social and health games for
example).

To address the increasing complexity outlined by Blow and
the growing consumer demand, mixed-initiative approaches
were embraced by game researchers and industry professionals
alike. Nowadays, game designers have tools to assist them in a
myriad of tasks, from level generation to game balancing. For
the systems that offer AI assistance, the term AI-assisted Game
Design Tools was coined. Despite their impressive results,
these tools also present challenges. One of the most prevalent
problems is a lack of generalizability. Many of the techniques
presented are directly attached to a specific game. It then
becomes difficult when a developer wants to apply the same
techniques to another project without having to re-implement
everything again from scratch. Another issue is the lack of
empirical justification for these approaches. There is a dearth
of literature on the human factors of mixed-initiatives systems
designed for game development tasks.

With these challenges in mind we present Cicero, an AI-
assisted Game Design Tool that allows designers to proto-

type and simulate their games by using intelligent agents
together with other computational methods like visualizations
and queries. Cicero is built on top of the General Video
Game AI Framework (GVGAI) and offers more generality than
systems built for stand-alone games. Users can apply all of
Cicero’s features to a number of different genres within the
gridphysics-based-games sphere. To highlight the immediate
advantage these methods offer game designers we describe
a user study in which we compare how humans perform
debugging games with and without AI assistance. To detail the
contrasting styles of features within Cicero, we also present a
comparison between its query and visualization systems.

II. RELATED WORK

A. Mixed-initiative game development tools

Mixed-Initiative User Interfaces have been well discussed
[2], [3], [4] and many fields have shown the benefits of the
paradigm. It is not a novel term in the game community either,
however it has only come to be embraced recently. Among
the sub-fields of game design where mixed-initiative methods
appear most promising, are for helping developers overcome
the complexities of game design and meet the increasing
demand of the game industry [5].

One of the more recent examples of Mixed-Initiative appli-
cations in games is Tanagra [6], a tool that assists humans in
designing levels for 2D platform games. The system works in
real time, creating many different guarenteed-playable levels
for the designer to choose from. Similarly, Ropossum [7],
also generates and solves levels for the popular physics puzzle
game Cut The Rope. The user is assisted in the tasks of level
design and evaluation. The tool is optimized to allow real-
time feedback from a given state, after receiving a sequence
of user inputs. It generates the possible actions for the player
until it finds a solution, if available. Sentient Sketchbook [8]
offers more generality than the two works already cited on
this section and according to its authors it also fosters hu-
man creativity [9]. It is also a tool to assist the creation
of game levels. It provides this assistance on strategy and
roguelike games. The system shows level suggestions in real-
time. It allows the users to interact by editing their levels
while generating recommendations based on previous choices.
For the game Refraction, Smith et al. [10] and Butler et
al. [11] present independent implementations of three diverse
level design automation tools. They use Procedural Content
Generation (PCG) techniques and Answer Set Programming
(ASP) to explore the intended design space and offer levels
with playability guarantee.

Aside from level generation, Isaksen et al. [12] presented an
evolutionary algorithm to find variants for the popular mobile



game Flappy Bird. The discovered game variants showed
themselves to be significantly different from the original game
regarding challenge, game feel, and theme. Still aside from
level generation, we have BIPED [13], which is focused on
giving insights to designers in order to help them generate
games. It offers assistance in the early stages of the game
design process. Using BIPED, designers can leverage simple
ideas and end up with a playable prototype and a formal rule
system that they can test as if they were sketching their ideas
for quick evaluation [14].

Mixed Initiative systems have been applied to table-top
games as well. The work of Osborn et al. [15] presents
a Game Description Language called Gamelan designed to
work with board games and card games. Gamelan has a focus
on automated game design support, the language contains
features for analyzing games based on the computational critics
framework. It provides feedback for game elements and events
that the designers can use based on their own perspective.

Nelson and Mateas [16] explored the human factors of
Mixed Initiative systems. They presented a series of interviews
with professional game developers to understand what were
the most desirable features for the next generation of AI-game
design assistants. Finally, Nelson also suggests the game itself
as a source of metrics. His work presents strategies about
how to extract valuable information from the relations between
game elements, such as a rule set, before any playtest session
[17].

All of the work discussed so far have contributed consid-
erable results in the realm of AI-assisted game design tools.
However, each is very attached to a single game or genre.
There is a lack of generality in their techniques in that they
need to be reimplemented every time someone starts a new
game project.

B. Game visualization and telemetry systems

Game visualization and telemetry is a topic which has
been gaining much attention in recent years [18]. Major game
companies like Unity and Bioware have released their own
solutions with specific features to work with visualization
analysis, Unity Analytics [19] and Skynet [20], respectively.
Due to telemetry techniques that are operating with large sets
of data, developers can now have a precise visual information
about their user behaviors [21], [22], including when their
interest in playing is starting to decrease[23]. One of the many
projects which is benefiting from the combination of telemetry
and visualization is Data Cracker. A tool to collect, analyze
and summarize data about player performance in one of the
titles of the Dead Space franchise [24]. The game Cure
Runners has a visualization system used to track the player
and assist designers on level balance tasks. This work is a
case study about the integration of an analytics tool into a
commercial game [25]. Canossa et al. present visualization
and event queries on a spatio-temporal interface. The UI allows
users to select the game elements whose behaviors they want
to track using raw data from gameplay sessions of VPAL a
mod based on the popular franchise Fallout [26]. As with
the AI-assisted tools, most of these visualization system are
tightly coupled to individual games. The visualization package
of Unity Analytics is a more general approach, but it does not
have agents to play the games and collect data automatically.

C. Game replay systems

For some authors, like Bowman et al. [27], game replay
systems are a subset for visualization techniques in videogames
also know as retrospective analysis. The most common use
for this kind of tool is training. For example, the work of
Wallner and Kriglstein [28] uses replay sessions for training
players of the multiplayer game World of Tanks. Another
example is the work of Srisuphab et al. [29] in which they
use the replay analysis for training players of the popular and
millennial board game Go. However, the technique can also
be used for development tasks, for example, the educational
game RumbleBlocks uses a replay system for checking if the
design is fostering behaviors that will lead to learning. All the
cases presented are very attached to their game projects and
allow little or even zero flexibility for being used outside of
them.

D. Declarative game engines and query systems for games

Declarative game engines expand the traditional idea of
using databases only as a persistence solution. White et.
al. [30] introduces the concept of state-effect patterns, a design
pattern that allows game designers to develop part of their
games declaratively. Deutch et. al. [31] describes the creation
of a framework to perform data sourcing in games. It is based
on SQL but extends it to allow probabilistic operations and
recursive rule invocation. A more traditional use of databases
can be seen on [29]. Here the authors store gameplay sessions
of Go matches in a database. The goal is to use the stored
matches to train novice players through a GUI.

Finally, [32] detail the process of implementing a bug
tracker architecture in five different games. The infrastructure
is concentrated on the main “game loop”. The authors imple-
mented specific lines of code that capture events of the games
into a XML file. The bug finder process is based on properties
about the expected behavior of the game expressed in a formal
language. During runtime, a monitor observes the game and
notifies the user when some property is violated.

We can see some examples of general methods in this
section, for example Varvaressos et al. [32] architecture is
applied to five games and got very impressive results. However,
everything has to be made by hand by changing the main loop
of the games, and it relies entirely on humans to find the bugs
when playing.

III. THE CICERO SYSTEM

Cicero is a mixed-initiative tool for helping users with
game prototyping tasks. There are two motivations behind
Cicero. First is the creation of a general AI-assisted game
design system, because existing tools nowadays are mostly
limited to a single game and a single mode of design as-
sistance. Second, we want to explore the question ”Can AI
make game development simpler?” in the specific terms of
this work. Therefore our questions is: ”Can AI make a human
more accurate in game debugging tasks?”. That said, while we
benefit from the level of generality the GVGAI provides us,
we know that such a generic ”silver bullet” is still a difficult
achievement [33]. At a minimum, we are contributing to the
development of a more flexible tool, whose features can be



applied to different games from different genres within the
realm of 2D grid-logic games. Figure 1.

Fig. 1. Cicero’s main user interface.

A. GVGAI & VGDL

Cicero is based on the General Video Game AI framework
(GVGAI) [34] and on the Video Game Description Language
(VGDL) [35], [36]. GVGAI is a framework for general video
game playing. It has an associated competition in which
contestants submit their best AI agents, which are judged based
on their performance of unseen games. VGDL is the language
used to describe games in this framework; the language is
compact, human-readable, and capable of expressing a large
range of 2D games based on graphical logic. Among the
kinds of games which can be described are adaptations of
many classical games developed for the Atari 2600 and the
Nintendo Entertainment System. Because of the popularity of
the GVGAI competition, there are about 100 VGDL games
available and several dozens of effective AI agents, with
varying strengths on different types of games [37].
A VGDL game is written by specifying four description
sets. The first one is used to describe the sprites and their
behaviours. The second one describes the interaction rules, i.e.
what happens when two sprites overlap each other. The third
set describes the termination conditions, the rules which say
if a player won or lose a game. There is one more set, used
to associate sprites with symbols. This one does not influence
the game rule description and game elements behaviors. The
association is just a visual cue for making the graphics process
simpler. See fig. 2.

Fig. 2. A Sokoban game written in VGDL

B. Agent-based testing

The availability of a simple, analytically tractable game
specification language and of a sizable library of AI agents
provides GVGAI with important benefits compared to stan-
dard game editors and engines such as Unity, Unreal or
GameMaker. The AI agents – can play (to some extent) all
games that can be specified in VGDL, what allow us to perform
automatic gameplay and game testing.
The agents are versions of Graph-Search based algorithms like
breadth-first, depth-first search and Astar, Genetic algorithms,
and Monte Carlo Tree-Search. When a game is running, the
agents simulate future states by using a forward model. Within
the states generated by the model, the agents follow their
heuristics in order to find the best action to take in the state they
are. The use of a forward model is not mandatory, therefore
algorithms which does not require it can also be implemented.
Practically speaking, our system is flexible enough to allow
that any kind of GVGAI agent, independent of the algorithm
they are based on, can play the games. For the purposes of
this paper, we are using a specific one, Adrienctx, a former
champion of the GVGAI competition, able to play and perform
well in several games and avoid problems associated to non-
human players like jitteriness, useless moves and no long term
planning at some extent [38]. Cicero offers users quick access
to the agents available in the GVGAI framework and also allow
that any new one can be uploaded to the tool. Thus, users can
easily configure their games and choose a myriad of agents to
simulate their games.

Because of the lack of uniformity in specification of games
developed in other game engines, there are no general game-
playing agents for arbitrary engines. So while, for example,
Unity is a much more versatile and powerful game engine in
general, the lack of general AI agents makes it impossible to
develop a tool such as Cicero for that engine. The recent Unity
ML Agents framework is taking some early steps towards
making it possible to interface advanced AI with Unity, we
are nowhere near having general-purpose game-playing agents
in Unity and there are still some open questions like a lack of
a fast simulation for instance.

C. SeekWhence

SeekWhence is a replay analysis tool. It allows users to
replay a stored gameplay session played by an agent or a
human player. They can navigate back and forth in the session
step-by-step, frame-by-frame. In accordance with the definition
of replay analysis of Bowman et al. [27], SeekWhence is a
retrospective tool designed for game analysis tasks such as
debugging and balancing. However, SeekWhence expands the
concept of replay tools. It is not only a collection of frames,
but also a collection of game states. This means that users can
retrieve any game state and edit it by changing game elements
and/or by picking other agents to play. The implementation of
SeekWhence consists of a graphical interface written in Java
with basic video controls for going back and forth in a stored
gameplay session. To (re)create all the states first, we have
to store all the information of a game state individually and
index it by game ticks. Therefore you have a linked list whose
nodes consists of the game ticks and the set of elements in
a game state. We have published a paper at the Foundations
of Digital Games 2017 Conference[39]. This paper contains



all the details about the motivation and implementation of the
SeekWhence infrastructure.

D. Playtrace aggregation

Playtrace aggregation is made available as a visualization
system. We collect the positions of every game element (player,
enemies, objects, etc.) and assign each a user-configurable
color. We then aggregate every position of the objects through-
out a play session as a heat map of locations around the
level (Figure 3). It works in real time and can be used with
SeekWhence for sequential analysis.

Fig. 3. Vizualization of playtrace aggregation. Red dots show how enemies
are exploring a level. Yellow ones show how a player is exploring it.

E. Mechanics recommender

The Mechanics Recommender is a tool to recommend
game mechanics whenever a user wishes. It is based on similar-
ities between the descriptions of the game in development and
the descriptions of available VGDL games. Therefore when a
user asks for recommendations, the system performs a search
in the whole library of VGDL games and returns mechanics
that might be a good fit for the game a user is working on,
letting up to them the final decision of what mechanic to
incorporate. The recommender is designed to be a Creativity
Supporting Tool in the inspirationalist school as described
by [40]. The mechanics recommender makes suggestions that
can help users accomplish specific goals while fostering their
creativity at the same time. The similarities compare the
parameter list of the sprites in the game a user is developing
against each game in the VGDL repository. The comparison
uses the Euclidean distance. Therefore, a ranking is created and
those games in the repository which have the least distance to
the user’s game are used to provide the suggestions of future
sprites to add with interactions between these sprites and the
ones a user already have.

F. Kwiri

Kwiri is a query system motivated by the idea that a
designer of a game will often want to figure out when and
where something happens. The answers to these questions
might not be evident when either playing a game or watching
a replay. For example, imagine that a particular Non Player
Character (NPC) occasionally dies even when not intersecting
one of the player’s bullets. To find out what is the cause of
the problem, the game designer would have to play the game
repeatedly until the event happened again, or watch a long
replay session attentively. But what if they could simply ask
the game when and where the NPC died, and who or what

killed it? Kwiri makes use of the fact that the games available
to Cicero have formally defined mechanics, and deliver the
capacity to interrogate replays for particular combinations of
events. Figure 4.

Fig. 4. Kwiri shows the results of a query on a panel list. It contains
information of the event, the elements involved, their positions and the frame
number of when it happened. When clicking on a panel, it opens the replay
tool (SeekWhence) and jumps exactly to the frame where the event took place,
highlighting it with visualization cues.

Kwiri is an extension of SeekWhence and it is implemented
in SQL and its GUI is written in Java. The users are able to
input queries about any game element (player, NPCs, items,
etc.), events (deaths, item pick-up, attacks, etc), frames and
positions. After system retrieval, users can navigate around
the data using Seekwhence features.

IV. USER STUDY

A quantitative research design was used to study user
performance in different tasks using Cicero features in game
debugging tasks.

A. Previous experiment

We conducted an informal experiment months ago before
starting to write this paper. In that study, three members
of our lab and a PhD student of our department took part
in the experiment. We were studying SeekWhence and the
visualization system. The users had the goal of listing the
number of inconsistencies they found. We explained all of
the available tools and let them freely use whichever they
wanted to accomplish the task. Two things became evident;
first, as the users were free to select an AI or to test the games
themselves, we were not able to appropriately measure how
good each method was independently. Second, we suspected
that the users were taking too long to find inconsistencies
with the visualization system. They were going back and forth
several times with SeekWhence to confirm their guesses, and
sometimes they gave up and provided incorrect answers. So
we hypothesized that a query-based system could be more
appropriate to filter and show game events to the users. This
might keep users from having to waste too much time and
provide wrong guesses. These two observations were our main
motivation to expand the user study. Thus we created tasks to
evaluate how accurate humans and AI are in game debugging
tasks and what advantage query and a visualization systems
can provide.



B. Pilot Study

We conducted a pilot study on two participants to evaluate
our experimental design, estimate the time to complete each
trial, test our desktop screen recording system, and judge the
clarity of our tasks and explanations. Our first participant, a
specialist in experimental design, suggested we create prede-
fined software for each one of the tasks to save time during
the experiment. The second pilot participant was a member of
our lab and the goal was to training the whole procedure and
establish a balance between the time available for the user to
play a game and how many times an AI should play (simulate)
the same game. We also learned that in order to not make the
experience exhausting to the users, it is better to present the
experiment as a series of multiple tasks as we changed the
parameters, rather than grouping every task together.

C. Subjects

After all the kinks were worked out of our experimental
design, we recruited 32 students from our university to take
part in the main study. They were, approximately, 30% female
and 70% male. 15% were masters students, 30% were graduate
students and 55% percent were undergraduate students. All of
them were enrolled in either the Computer Science or Digital
Media departments. All subjects were recruited via their de-
partments’ email-lists. Those who completed the experiment
were awarded a $10 USD Amazon Gift Card. Users took, on
average, approximately 30 minutes to complete the experiment.

D. Research setting

The research was conducted in an isolated, sound-proofed
room. We conducted the experiment on a Mac Book Pro laptop
(2.9 GHz, Intel Core i5, 8 GB RAM) with the screen mirrored
on a Mac 27-inch monitor.

E. Users Tasks

We prepared two tasks involving features of Cicero to
evaluate how accurate and quickly users could solve realistic
problems.

In all the tasks we were testing the hypothesis: humans
perform better in game debugging tasks with AI assistance
rather than without it. The independent variables of this study
were the games used for each one of the tasks and the players
(humans or AI). The dependent variable was the accuracy in
detecting inconsistencies. The AI agent player used was the
Adrienctx agent, it is implemented based on an open loop
approach [41] and it is a previous winner of the GVGAI
competition [34]. Therefore, able to perform well in different
game challenges, and as stated in the subsection “Agent-
Based Test” it avoids, at some extent, disturbing characteristics
common to non-human players like jitterines and no long term
planning.

1) Invincible Barriers: Human without AI assistance VS.
Human with AI assistance: The first task was to find incon-
sistencies in the rules of our clone of the space-shooter game
Space Invaders. There was only one inconsistency, barriers
which could never be destroyed.

We divided the participants in two groups, which varied the
order in which they received each task. Group A was asked

first to find inconsistencies without any kind of AI assistance,
but then they were allowed to watch the AI play the game
to help identify the location of the indestructible barriers.
Group B were assigned the same tasks in opposite order.
First, they completed the task using AI assistance and then
by themselves. In both tasks, with and without AI assistance,
after the subject (or their AI assistant) was done with their
respective game session, we retrieved the last frame and we
asked the user to put a red mark on the barriers they thought
were never destroyed. For all the cases, users were allowed to
use SeekWhence.

Humans were given special advantages that the AI alone
did not have. For the AI, we ran the game just once. For the
humans we allowed them to play as many times as they wanted
for up to 80 seconds (more than 3x the time needed for the
AI to finish its simulation). For both players (AI and humans)
we changed the positions of the barriers in the level. The total
number of indestructible barriers was 9 out of 39. During this
task, the users played two versions of Space Invaders, a normal
one and an extreme one. In the extreme version, we changed
the parameters of the game to make enemies drop bombs
constantly and to make the human player immortal. Thus, we
made it easier for humans to find the inconsistency in the
game in two separate ways. For both game types, normal and
extreme, humans have more time to play, and in the extreme
version they could not die. Figure 5.

Fig. 5. Example of a Space Invaders level. The barriers in red are the
inconsistencies the users should find.

2) Query VS. Visualization: This task analyze how accurate
the users are in finding answers related to specific questions
about the inconsistencies. For this case, they were not required
to play, just analyze the result of an AI play-through. We
allowed the AI to play the game for ten seconds, enough
time to collect the necessary data for the task. We divided
the participants in two groups. Group A started by using
the query system and Group B by using the visualization
system. For both cases, after we ran the game, we opened
a form with true/false questions like “is any of the barriers
destroying bombs?” or “Player shots can be destroyed by
barriers?”. For this task, we required users use only the system
(query or visualization) being evaluated at the time, along with
SeekWhence.

3) F-Walls: Human without AI assistance VS. Human with
AI assistance: For this task, we altered a clone of the Zelda
cave levels. We removed the enemies and we planted fake
walls (hence the name of this task: F-walls). The goal here
was to identify how many fake walls subjects could find. We
divided the participants in two groups, one started by playing
by themselves while the other one started by watching an AI



Fig. 6. This flowchart shows the procedure taken by users of the group A.
They started the first and third tasks without AI assistance, and started the
second task by using the query system. By switching the orange blocks with
the gray ones, we have the procedure taken by the group B.

playing. After they or the AI finished, they were asked to put
red marks on the level to indicate the location of the fake walls.
The users had 80 seconds to play while the AI simulated the
game five times taking, on average, less than 40 seconds in
total. So that users didn’t to rely on their memories, which
would negatively affect their performance, they were allowed
to use the visualization system or SeekWhence. The query
system was not an option since it does not capture events
without explicit interactions between two sprites.

F. Procedure

As soon as a participant came into the room, they were
given consent forms explaining the research and the purposes
of the experiment. After they signed the forms we did a quick
setup of the system by asking them to test the mouse and the
keyboard. After that we briefly explained the tasks and how
to play the games. We made it explicit that in all the tasks
their goal was not win the game, but to find inconsistencies in
the game’s implementation. We also explained to the subjects
that they were not obliged to participate in the study, and they
had the option to drop out at any time. For the first (Space
Invaders) and the third (F-Walls) task, we explained the game
and the inconsistency they need to find. We ran the specific
tasks assigned for their group, then we asked them to put a
red mark on the inconsistencies they have found.

For the second task (query vs. visualization), we explained
to the users that we would have the AI play the games for ten
seconds. Afterwards we would open a panel (the query or the
visualization) and ask them to fill out a form based on what
the panel was showing to them. Figure 6.

V. RESULTS

The results are divided into three sections, each related to
one of the tasks presented in the previous section.

A. Task 1: Space Invaders

In this task we investigate how human performance in game
debugging tasks is affected by AI assistance.

1) Normal Case: To evaluate if humans with AI assistance
were performing better than humans without assistance a
paired samples t-test (one-tailed) was used to compare the
scores of the groups. The result was statistically significant
(p = 1.002e−05) and the AI assistance improved the accuracy
of the users by almost three times (2.7x). The AI assistance
also helped users avoid mistakes. The mean showed that while
users without AI assistance were making 1.75 wrong choices,
users with AI assistance made none. This result was significant
with p = 0.0038. We also ran precision and recall tests for both
groups. The results for the tasks with AI assistance show that
it improves both precision (100%) and recall (˜82.29%) over
the tasks without AI assistance (precision: ˜83.14%, recall:
˜52.08%).

2) Extreme Case: We did not achieve statistical signifi-
cance for the AIs ability to help humans in the extreme variant
of Space-Invaders. The results for humans with and without AI
assistance were very close, with the AI only offering a mean
improvement of 0.25 additional correct responses. There was
also a mean reduction of 0.25 erroneous responses with AI
assistance. The similarities were reinforced when we ran the
precision and recall tests. While the group with AI assistance
got a precision and recall of, respectively, 100% and ˜93.05%,
the second group got ˜97.81% and ˜90.28%.

B. Task 2: Query VS. Visualization

For this task we investigated if users can be more accurate
in game debugging tasks if they use a query system rather than
a visualization system. McNemar’s test was used to compare
the data in this task. The result was statistically significant
(p-value = 0.0047) and showed that users were more accurate
with the query system. Their answers for the two questions
were correct ˜96.77% and ˜87.09% of the times. While with
the visualization system, the accuracy was of ˜64.51% and
˜80.64%.

C. Task 3: F-walls

Here, we also investigate if a human performance in game
debugging tasks is better with AI assistance than without. No
statistically significant difference were found. Humans with
and without AI assistance could found similar number of fake
walls with a mean difference less than 0.24. The same happens
for the number of mistakes committed, which has a mean
difference less than 0.3. The recall result was of ˜87.5% for
humans without AI assistance and of ˜81.66% for humans
with AI assistance. While the precision result was of ˜96%
for humans without AI assistance and of ˜78% for humans
with AI assistance.

VI. DISCUSSION

The results of the first task (identifying invincible barriers
with/without AI) confirmed our expectations of that humans
perform more accurately with AI assistance than without. For
the extreme version of Space-Invaders, by giving advantages to
the users (they could not be killed) they were able to perform



comparably to users with AI assistance. While this seems a
viable way to make debugging easier, we argue this is not
the most practical method. If one knows exactly which game
parameters can be tweaked to exacerbate bugs, then its likely
the game developer has a good idea of where the bug exists
already. In absence of such an accurate hunch, game developers
are left having to tweak every parameter in the game until a
bug becomes apparent. This is neither easy nor efficient.

The second task (query vs. visualization) also confirmed
our expectations that the query system can be better than the
visualization for games that can use both techniques. Users
spent more time with the visualization system and they had to
use SeekWhence in order to find the right frame of the game
that could answer their question. On the other hand, when
approached using the query system, these tasks were solved
almost instantaneously. The query system shows a panel that
displays exactly the answer to the question entered and (if told
to) can jump straight to the frame in the replay sequence where
that action happens.

The third task (finding fake walls with/without AI) shows
that humans alone and humans with AI assistance perform
almost equally. This task also showed that humans without
AI assistance were slightly more precise than humans with it.
The main point of this task is that the game in question does
not require dexterity like space invaders. Humans can easily
design and execute an efficient bug-finding strategy of bumping
every wall to find the fake ones. Whereas in space invaders,
subjects had concerns like bombs, barriers, enemies, life, shots,
etc., in Zelda the user was left undistracted to hunt for bugs.
While even in Zelda the AI will explore all the possibilities of
winning the game, and eventually will find the fake walls, this
can be a time-consuming process, and the AI is not guaranteed
to touch every wall.

Despite many of the results confirmed our expectations,
more tests are necessarily in order to achieve statistical sig-
nificance for all the cases explored in this study. Concerning
to efficiency, we suggest more work on agent customization.
The dexterity presented by the agents evaluated in this paper is
enough for playing games like Space Invaders in capabilities
that overcome humans. However for finding inconsistencies in
levels of a bigger size and complexity it would be necessary
thousands (or more) simulations. Still, because the goal of
the agent is beating the game, even with a huge amount of
simulations there are no guarantees it would cover all the cases
and finding all the inconsistencies expected by the developers.
Therefore we encourage more research on designing general
agents oriented to find game design flaws.

Fig. 7. Example of a Zelda level. In red, the positions of the fake walls that
the user should find.

VII. CONCLUSION AND FUTURE WORK

Cicero is a mixed-initiative system for game prototyping
and debugging tasks. While many mixed-initiative tools are
directly attached to a single game or a game genre, Cicero has
features that can be applied to all games and genres within the
GVGAI domain. Through a user study we found that in game
debugging tasks, users perform better with AI assistance in
games that require dexterity. We also found that in tasks where
both a query and visualization system can be used, the query
system leads users to be more accurate in their outcomes. We
applied the same tool to two rather different games (clones of
Space Invaders and Zelda) in the tests, thus demonstrating its
generality. We suggest for future work in mixed-initiative tools
for video games that new methods ought be made available
across different game projects and be evaluated with user
studies to measure their impact.
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J. Lee, C.-U. Lim, and T. Thompson, “The 2014 general video game
playing competition,” 2015.

[35] T. Schaul, “A video game description language for model-based or
interactive learning,” in Computational Intelligence in Games (CIG),
2013 IEEE Conference on. IEEE, 2013, pp. 1–8.

[36] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and
J. Togelius, “Towards a video game description language,” 2013.

[37] P. Bontrager, A. Khalifa, A. Mendes, and J. Togelius, “Matching games
and algorithms for general video game playing,” in Twelfth Artificial
Intelligence and Interactive Digital Entertainment Conference, 2016.

[38] A. Khalifa, A. Isaksen, J. Togelius, and A. Nealen, “Modifying mcts
for human-like general video game playing,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
ser. IJCAI’16. AAAI Press, 2016, pp. 2514–2520. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3060832.3060973

[39] T. Machado, A. Nealen, and J. Togelius, “Seekwhence a retrospective
analysis tool for general game design,” in Proceedings of the 12th
International Conference on the Foundations of Digital Games, ser.
FDG ’17. New York, NY, USA: ACM, 2017, pp. 4:1–4:6. [Online].
Available: http://doi.acm.org/10.1145/3102071.3102090

[40] B. Shneiderman, “Creativity support tools: Accelerating discovery and
innovation,” Commun. ACM, vol. 50, no. 12, pp. 20–32, Dec. 2007.
[Online]. Available: http://doi.acm.org/10.1145/1323688.1323689

[41] D. Perez Liebana, J. Dieskau, M. Hunermund, S. Mostaghim,
and S. Lucas, “Open loop search for general video game
playing,” in Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO ’15. New
York, NY, USA: ACM, 2015, pp. 337–344. [Online]. Available:
http://doi.acm.org/10.1145/2739480.2754811


