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We analyze a variety of ways that comparing dice values can be used to simulate battles in games,
measuring the ‘win bias’, ‘tie percentage’, and ‘closeness’ of each variant, to provide game designers
with quantitative measurements of how small rule changes can significantly affect game balance.
Closeness, a metric we introduce, is related to the inverse of the second moment, and measures how
close the final scores are expected to be. We vary the number of dice, number of sides, rolling dice
sorted or unsorted, biasing win rates by using mixed dice and different number of dice, allowing
ties, rerolling ties, and breaking ties in favour of one player.

1 Introduction

Dice are a popular source of randomness in
games. We examine the use of dice to simulate
combat and other contests. While some games
have deterministic rules for exactly how a battle
will resolve, many games add some randomness,
so that it is uncertain exactly who will win a bat-
tle. In games like Risk [1], two players roll dice
at the same time, and then compare their values,
with the higher value eliminating the opponent’s
unit. Others use a hit-based system, like in Axis
and Allies [2], where a die roll of a target value or
less is a successful hit, with stronger units sim-
ulated by larger target values and larger armies
rolling more dice. In both games, stronger forces
are more likely to win the battle, but lucky or un-
lucky rolls can result in one player performing
far better, making a wide difference in scores.

Given a very large number of games played
between players, unlucky and lucky rolls will
balance out such that the player who has better
strategy will probably end up winning; however,
people might not play the same game enough
times for the probabilities to even out. Instead,
they play a much smaller, finite number of rolls
spread across one session, or perhaps a couple
of play sessions. The gambler’s fallacy is the com-
mon belief that dice act with local representative-
ness: even a small number of dice rolls should be
very close to the expected probabilities [3, 4, 5].
Therefore, it can often be quite frustrating when
rolling poorly against an opponent: players often
blame the dice, or themselves, for bad rolls, even
though logic and reason indicates that everyone
has the same skill at rolling dice. Game designers
may want to avoid or reduce this kind of negative
player experience in their games.

2. Sort Dice from High to Low

3. Compare Dice

4. Calculate Score

1. Roll Dice

Win Win Loss TieTie

Loss Loss Win TieTie

Final Score:      2-1
Score Difference:     1
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B

Figure 1. An example of a dice battle.

Although there are thousands of games based
on dice (BoardGameGeek lists over 7,000 entries
for dice1, and hundreds of games are described
in detail in [6, 7]), we examine games where play-
ers roll and compare the individual dice values,
as in Figure 1. The dice are sorted in decreas-
ing order and then paired up. Whichever player
rolled a higher value on the pair wins a point.
The points are summed, and whomever has more
points wins the battle. We use the term battle to
imply an event resolved within a larger game.
The word is normally used to refer to combat,
but our analysis can be used any time players
compare dice outcomes in a contest.

We examine different variants and show how
different factors affect the distribution of scores
and other metrics which are helpful for evaluat-
ing a game. By adjusting the dice mechanics, a
designer can influence the expected closeness of
the outcomes of a battle, the win bias in favour
of one of the players, and the tie percentage, the
fraction of battles that end in a tie. The variants
we examine include different numbers of dice,

1https://boardgamegeek.com/boardgamecategory/1017/dice
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various sided dice, different ways to sort the dice,
and various ways to break ties.

Dice have come in various numbers of sides
for millennia [8]: some of the oldest dice, dating
back to at least 3500 B.C., were bones with 4 flat
sides and 2 rounded ones. Eventually, 6-sided
dice were created by polishing down the rounded
sides. The dot patterns we see on today’s 6-sided
dice also come from antiquity. Ancient dice also
come in the form of sticks with 4 long sides for
Pachisi or 2 long sides for Senet [9]. The common
dice in use for modern games are 4, 6, 8, 10, 12,
and 20-sided, but other variants exist. In this pa-
per, we use the notation ndk to mean a player
rolls n dice which have k sides (e.g. 5d6 means
rolling 5 dice, each with 6 sides).

By understanding how rules and randomness
affect closeness, a designer can then choose the
appropriate combination to try to achieve their
desired game experience. A designer may prefer
for their game to be highly unpredictable with
large swings, intentionally increasing the risk for
players to commit their limited resources. In ad-
dition, randomness can make a game appear to
be more balanced because the weaker player can
occasionally win against the stronger player [10].
Large swings may be more emotional and chaotic,
and the ”struggle to master uncertainty” can be
considered ”central to the appeal of games” [11].
Or, a designer may prefer for each battle to be
close, to limit the feelings of one side dominating
the other in what might be experienced as unfair
or unbalanced, in a trait known as inequity aver-
sion [12, 13]. Similarly, a designer may prefer to
allow ties (simulating evenly matched battles), or
wish to eliminate the opportunity for ties (forcing
one side to win). Finally, a designer might want
to vary the rules between each battle within a
game, to represent changing strengths and weak-
nesses of the players and to provide aid to the los-
ing player. A designer can adjust randomness to
encourage situations appropriate for their game.

For most sections in this paper, we calculate
the exact probabilities for each outcome by iter-
ating over all possible rolls, tabulating the final
score difference. Because each outcome is in-
dependent, we can parallelise the experiments
across multiple processors to speed up the calcu-
lations (details about how many calculations are
given in the Appendix). There are other methods
one could use to computationally evaluate the
odds, such a dice probability language like Any-
Dice [14] or Troll [15], or by using Monte-Carlo
simulation (we use simulation when examining
rerolls in Section 8). Writing the analytical proba-
bilities becomes difficult for more complex games
and we feel that presenting equations of this type
has limited utility for most game designers.

2 Metrics for Dice Games

Quantitative metrics have been used to computa-
tionally analyze outcome uncertainty in games,
typically for the purpose of generating novel
games [16, 17]. Here we focus only on metrics
that examine the final scores of the dice battle;
we do not evaluate anything about how scores
evolve during the battle itself (which we believe
would be essential for more complicated games).
But for simple dice battles, which are a compo-
nent of a longer game, we can just focus on the
end results. Win bias and tie probability, are similar
to those used in previous work, but one of our
metrics, closeness, is something we have not seen
used before in game analysis.

We now define these metrics precisely. For
the remainder of this paper, we use the terms
“battle” and “game” interchangably. Let sA be
the final score of a battle for Player A, and sB be
the final score for Player B. The battle score is then
written as sA − sB. The score difference, d, is the nu-
merical value of the battle score, so d = sA − sB. If
we iterate over all the possible ways that the dice
can be rolled, and count the number of times each
score difference occurs, we can make a score differ-
ence probability distribution, D(d). This describes
the probability of achieving a score difference of d
in the battle. We calculate D(d) by first counting
every resulting score difference in a histogram-
like data structure, and then dividing each bin by
the total sum of all the bins.

We now define the win percentage as the per-
cent probability of Player A winning a battle.
This can be calculated by summing the proba-
bilities where the score difference is positive and
is therefore a win for Player A. This is calculated
as 100 ∑d>0 D(d) and will be between 0% and
100%. Loss percentage is the percent probability
of Player A losing a battle, and is calculated as
100 ∑d<0 D(d), also between 0% and 100%.

We take the difference of the win and loss
percentages to calculate win bias:

win bias = 100

(
∑
d>0

D(d)− ∑
d<0

D(d)

)
(1)

This will vary between -100% and 100%. Games
with a win bias of 0% are balanced, with no pref-
erence of Player A over Player B. If the win bias
is > 0% then Player A is favoured; if < 0% then
Player B is favoured. This metric is similar to the
Balance metric in [16] but here we include the ef-
fect of ties and are concerned with the direction
of the bias. A non-zero win bias is often desired,
for example when simulating that one player is
in a stronger situation than the other.

Next, we have the tie percentage which tells
us the percent probability of the battle ending in
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a tie, which we define as:

tie percentage = 100 (D(0)) (2)

Some designers may want a possibility of ties,
while others may not. This metric is analogous to
drawishness in [16].

Finally, we present closeness, our new metric
which measures how much the final score values
centre around a tied game. Game that often ends
within 1 point should have higher closeness than
games that often end with a score difference of 5
or -5. The related statistical term precision is de-
fined as the inverse of variance about the mean.
For closeness, we define this as the square root
of the inverse of variance in the score difference
distribution about the tie value d = 0:

closeness =
1√

∑d d2D(d)
(3)

To explain this, we look at the denominator,
which is similar to the standard deviation as the
square root of variance. However, we do not want
this to be centred about the mean as in the typ-
ical formulation. A game that always ends tied
0-0 would have a variance of 0, but so would a
game that always ends in 5-0 because the out-
come is always the same. Yet 5-0 is certainly not
a close score. Thus, we centre the second moment
around 0 since close games are those where the
final score differences are almost 0. Finally, we
take the inverse because we want the metric to
increase as the scores become closer and decrease
as the scores become further apart.

This formulation mirrors the well-known
term “close game”, and the values of closeness
have some intuitive meaning. Closeness ap-
proaching 0 means that the final score differences
are very spread out. Closeness approaching ∞
means the scores are effectively always tied. A
closeness of C means that a majority of the score
differences will fall between -1/C and 1/C. If a
game can only have a score difference of -1 or 1,
its closeness will be exactly 1, no matter if it is
biased or unbiased. If we also allow tie scores
(score differences of -1, 0, or 1), we would expect
the game to have more closeness – in fact for this
case closeness will always be > 1.

3 Rolling Sorted or Unsorted

Many games ask the players to roll a handful of
dice. A method to assign the dice into pairs is
required. Risk sorts the dice in numerical order,
from largest value rolled to smallest, which is the
approach we will take here. We also consider

games where the dice are rolled one at a time (or
perhaps one die is rolled several times) and left
unsorted. We now show how these two methods
of rolling dice significantly change the distribu-
tion of score differences.

3.1 Sorting Dice, With Ties

We first look at the case where each player rolls
all n of their k-sided dice and then sorts them in
decreasing order. The two sets of dice are then
matched and compared. If a player rolls more
than one copy of the same number, the relative
order of those two dice doesn’t matter.

Figure 2 shows the distribution of score dif-
ferences when each player rolls n = 5 dice and
sorts them. We vary k, the number of sides. Ties
are allowed, with neither player earning a point.
We see the games all have a win bias of 0, as
expected from the symmetry where the players
have the same rules. Additionally, tie percentage
decreases as we increase sides: the more possible
numbers to roll, the less likely the players will roll
the same values. Increasing sides also decreases
closeness, making higher score differences more
likely to occur. For the case of 5d8 and 5d10, it’s
approximately equally likely to have every score
difference: wide differences in scores are equally
common to close scores.
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Roll Sorted, With Ties
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5d4

5d6
5d8

5d10

Game win bias tie % closeness
5d2 0.00 24.61 0.632
5d4 0.00 11.97 0.384
5d6 0.00 9.91 0.340
5d8 0.00 9.15 0.323
5d10 0.00 8.64 0.315

Figure 2. Rolling 5dk sorted, with ties.

5d2 stands out as having a bell shaped curve
with significantly higher closeness: close games
are more likely, but ties are also more likely as
well. Nonetheless, two-sided dice, which we
know as coins, are not typically used in games

2https://boardgamegeek.com/boardgame/146130/coin-age
3https://laboratory.vg/shift/
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partly because standard coins are difficult to toss
and keep from rolling off the table (Coin Age2 and
Shift3 are notable counter-examples, and some
countries use square coins). However, stick dice –
elongated dice that only land on the two long
sides – do not roll away, and might be something
interesting for more game designers to investi-
gate for future games.

In Figure 3, we see how changing the number
of six-sided dice rolled affects the distribution of
score differences. They remain symmetric with
a win bias of 0, and after 2d6, adding more dice
decreases the tie percentage. Closeness decreases
as we add more dice, which makes sense as with
more dice there is a higher probability of the score
differences tending away from 0. 1d6 has a close-
ness greater than 1, because it allows 0-0 ties as
well as games that end 1-0 or 0-1; without any
ties, it would be exactly a closeness of 1.
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3d6
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5d6

Game win bias tie % closeness
1d6 0.00 16.67 1.095
2d6 0.00 20.52 0.680
3d6 0.00 13.91 0.504
4d6 0.00 11.71 0.404
5d6 0.00 9.91 0.340

Figure 3. Rolling nd6 sorted, with ties.

3.2 Dice Unsorted, With Ties

We now examine the case where the dice are
rolled and left unsorted. The dice could be rolled
one at a time, possibly bringing out more drama
as the battle is played out in single die rounds.
Both players still roll n dice, but the order they
were rolled in is used when comparing, as shown
in Figure 4a. As before, the player with the higher
value earns a point and if tied then neither player
earns a point.

2 5 2 4 1

5 1 6 4 1

Roll 1 Roll 2 Roll 3 Roll 4 Roll 5
(a)

(b) Le
ft

Right

Away

Near

Figure 4. Two methods to roll unsorted dice.

Although we will think of the dice being
rolled one at a time (and actually generate them
in our simulations this way), it’s also possible for
players to roll a handful of dice to quickly create
a sequence, as shown in Figure 4b. A player first
rolls a handful of dice on the table. The dice are
then put in order from left to right as they settled
on the table. If two dice have the same horizontal
position on the table (as the and do in the
example), the die further away from the player
will come before the die that is near.4
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5d4
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Game win bias tie % closeness
5d2 0.00 24.61 0.632
5d4 0.00 19.32 0.516
5d6 0.00 16.69 0.490
5d8 0.00 14.49 0.478
5d10 0.00 12.71 0.471

Figure 5. Rolling 5dk unsorted, with ties.

In Figure 5, we examine how changing the
number of sides of dice changes the distribution
of ties and close games. We compare 2-sided dice
(coins), 4-sided, 6-sided, 8-sided, and 10-sided
dice. In all cases, the game is balanced, because
the win bias is 0. We can see that more sides
decreases the odds of the battle ending in a tie

4An anonymous reviewer mentioned their preferred method for rolling unsorted nd6 is to throw dice against a
sloped box lid: the dice line up in a random order as they slide against the lid wall. Occasionally one die might stop
against another die instead of the wall; in that case, simply jiggle the lid slightly until they all slide against the wall.
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score. We can also see that more sides decreases
closeness and therefore increases the odds of a
lopsided victory with more extreme score differ-
ences between the players.

In Figure 6, we examine how changing the
number of dice rolled affects the score difference.
All games are balanced, since the win bias re-
mains 0 for these games no matter how many
dice are rolled. Ties are much more common
when rolling an even number of dice. When com-
paring with Figure 3 we see that rolling unsorted
increases the percentage of ties. As for closeness,
more sides decrease the closeness, as we’ve also
seen when rolling sorted.
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Game win bias tie % closeness
1d6 0.00 16.67 1.095
2d6 0.00 37.50 0.775
3d6 0.00 17.82 0.632
4d6 0.00 23.95 0.548
5d6 0.00 16.69 0.490

Figure 6. Rolling n 6-sided unsorted, with ties.

3.3 Sorted Vs. Unsorted

In Figure 7 we review the effect of changing
the way that dice are rolled, while keeping
the same number of dice and number of sides.
Rolling sorted has a flat distribution that leads
to a higher likelihood of larger score differences,
while rolling unsorted has a more normal-like dis-
tribution where closer games are more likely and
closeness is higher. However, higher closeness
increase tie percentage.

The game designer can choose the method
they find more desirable for the particular game
they are creating. In addition to choosing be-
tween rolling sorted or unsorted, the designer
can change the number of dice and number of
sides on the dice. Using fewer sides on the dice
increases closeness, but also increases the tie per-
centage. Using fewer dice increases closeness, but
again generally increases the tie percentage. We
address ties in the next sections.
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Game win bias tie % closeness
Unsorted 5d6 0.00 16.69 0.490

Sorted 5d6 0.00 9.91 0.340

Figure 7. 5d6 rolled sorted vs unsorted.

4 Resolving Tied Battles

In the previous section, when dice were rolled
with the same values, neither player received a
point for that pair of dice. This leads to some situ-
ations where the players get a 0 score difference
and tie the game (with as much as 24.6% for the
5d2 case). For games where n is even, a score
difference of 0 can occur (becoming less likely as
k increases).

A game designer might wish that tie games
are not allowed. One simple way would be to
have Player A automatically win whenever the
battle ends with a score difference of 0 – however
this would have a massive bias in favour of Player
A. In the above example, this would add an ad-
ditional 24.6% bias which is likely unacceptable
when trying to make the games close. To elimi-
nate the bias over repeated battles, Player A and
B could take turns receiving the win (perhaps by
using a two-sided disk to indicate who will next
receive the tiebreak).

Another simple way that would not have bias
would be for the players to flip a coin (or some
other random 50% chance event) to decide who
is the winner of the battle. Using dice, the players
could roll 1dk and let the player with the higher
value win the battle. If they tie again, they repeat
the 1dk roll until there is not a tie – we analyze
this type of rerolling in Section 8.

In the next few sections, we will examine
other ways to change the rules of the game so
that score differences of 0 will not occur for games
when n is odd. When n is even, score differences
of 0 can still occur, and one of the above final
tiebreaker methods can be used.
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5 Favouring One Player

We now investigate breaking tied dice by always
having one player winning a point when two dice
are equal. We examine the case where Player A
will always win the point (as in Risk where de-
fenders always win ties against attackers), but
in general the same results apply if A and B are
swapped. Favouring one player causes a bias,
helping that player win more battles, so we also
examine several ways to address this bias.

5.1 Rolling Sorted, Player A Wins Ties

In Figure 8 we see the score distributions that
occur when tied dice give a point to Player A.
First, we see these distributions are not symmet-
ric, and are heavily skewed towards Player A, as
reflected in the positive win bias. As one would
expect, giving the ties to Player A causes that
player to have an advantage over B. Increasing
the number of sides on the die decreases the win
bias – this is expected as with more sides on a
die, it’s less likely for the players to both roll the
same number. When n is odd, we also see that
even score differences are no longer possible, and
most importantly a tied score difference of 0 is
no longer possible so tie percentage is always 0%.
For the first time, we see an example of closeness
increasing as the number of sides increases, be-
cause the distributions are less skewed towards
large 5-0 lopsided wins.
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Game win bias tie % closeness
5d2 89.06 0.00 0.238
5d4 54.79 0.00 0.271
5d6 38.21 0.00 0.282
5d8 29.13 0.00 0.287

5d10 23.48 0.00 0.289

Figure 8. Rolling k-sided dice sorted, A wins ties.

5.2 Rolling Unsorted, A Wins Ties

By switching to rolling dice unsorted, the close-
ness is increased for all numbers of dice, and the
distribution is more centred, but there is still a

significant bias towards Player A, as we can see
from Figure 9. This is an improvement, but one
might desire another way to eliminate the bias.
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5d2 79.30 0.00 0.316
5d4 44.96 0.00 0.400
5d6 30.68 0.00 0.424
5d8 23.19 0.00 0.434

5d10 18.63 0.00 0.439

Figure 9. k-sided dice unsorted, A wins ties.

In conclusion, breaking ties in favour of one
player eliminates ties, but creates a large win bias.
However, this can be reduced with more sides on
the dice. This bias occurs for both rolling sorted
and unsorted, although rolling unsorted results
in higher closeness and slightly lower win bias.
We now examine ways to reduce this bias in vari-
ous ways.

6 Reducing Bias With Fewer Dice

The bias introduced by having one player win
ties can be undesirable for some designers and
players, so we now look at a method of reducing
this bias by having Player A roll fewer dice than
Player B, to make up for the advantage they earn
by winning ties. This is the strategy used in Risk:
the winning-ties bias towards the Player A (de-
fender) is reduced by allowing Player B (attacker)
to roll an extra die when both sides are fighting
with large armies. When rolling sorted, the dice
are sorted in decreasing order, and the lowest-
valued dice which are not matched are ignored.
When rolled unsorted, if one player rolls fewer
dice then there is no way to decide which dice
should be ignored. We therefore only examine
the case of rolling sorted.

We examine the effect of requiring Player A to
roll fewer dice in Figure 10. Rolling two or three
fewer dice significantly favours Player B, and
rolling the same number of dice favours Player A.
However, Player A rolling 4d6 against Player B
rolling 5d6 has a relatively balanced distribution,
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no longer significantly favouring one player over
the other. Unfortunately, ties once again occur
for 4d6 vs 5d6 – they occur for any battle where A
rolls an even number of dice – with a significant
likelihood of a final tie score.
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Game win bias tie % closeness
2d6 v 5d6 -35.61 32.37 0.608
3d6 v 5d6 -23.63 0.00 0.451
4d6 v 5d6 3.23 20.40 0.357
5d6 v 5d6 38.21 0.00 0.282

Figure 10. Player A rolls fewer dice to control
bias.
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Game win bias tie % closeness
1d6 v 2d6 -15.74 0.00 1.000
2d6 v 3d6 -7.91 33.58 0.613
3d6 v 4d6 -2.80 0.00 0.450
4d6 v 5d6 3.23 20.40 0.357

Figure 11. Rolling 1 fewer die to control bias.

Since having one fewer die made Player A
and Player B relatively balanced when B rolls 5
dice, we can look at more cases when Player B
rolls n dice. In Figure 11, we have more cases
where Player A has one fewer die than Player
B. Most of these cases are relatively balanced, al-
though 1d6 vs 2d6 still gives a significant advan-
tage to Player B. Note that the cases of 1d6 v 2d6
and 2d6 v 3d6 are the ones that occur in Risk.

To reduce the win bias introduced by hav-
ing Player A win all ties, we reduced this bias
by having Player A roll fewer dice. As we have
seen, rolling one fewer dice is the best choice that
leads to the smallest win bias, and having both
players roll more dice also reduces the win bias,
but decreases the closeness. Instead of having
the players rolling different numbers of dice, we
now will examine having the players roll differ-
ent number of sides for the dice.

7 Reducing Bias With Mixed Dice

Another way we can reduce the bias towards
Player A when they always win ties is to give
Player B some dice with more sides. For example,
we could have Player A roll 5 6-sided dice and
have Player B roll 3 6-sided dice and 2 8-sided
dice, to give them a small advantage to help elim-
inate the advantage A receives for winning ties.
Because bias does not occur when we allow ties,
we will only examine using mixed dice for games
where Player A wins ties.

7.1 Mixed Dice Sorted, A Wins Ties

In Figure 12, we show the distribution of score
differences for different mixes of d6 and d8 for
Player B, while Player A always rolls 5d6. We can
see that adding more d8 adjusts the bias in favour
of Player B, but adding too many then biases B’s
win rate too far.
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Game win bias tie % closeness
5d6/0d8 38.21 0.00 0.282
4d6/1d8 24.36 0.00 0.294
3d6/2d8 10.80 0.00 0.302
2d6/3d8 -2.24 0.00 0.305
1d6/4d8 -14.56 0.00 0.305
0d6/5d8 -25.98 0.00 0.301

Figure 12. Mixed d6 and d8 to control bias.

The most balanced position is to have Player
B roll 2d6 and 3d8 against Player A’s 5d6 (this is
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drawn as a solid line in the figure), with win bias
of -2.24%.

We tried all possible mixes of 5 dice made
of 6-sided, 8-sided, and 10-sided dice, and found
that only 3 cases have a win minus loss bias under
10%; these cases are shown in Figure 13. The bias
is still most balanced when Player B rolls 2d6 and
3d8 against Player A’s 5d6. However, by rolling
3d6/1d8/1d10, we can get a slight bias towards
Player A, if that is desired.
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Game win bias tie % closeness
3d6/1d8/1d10 2.67 0.00 0.307

2d6/3d8 -2.24 0.00 0.305
3d6/2d10 -5.36 0.00 0.310

Figure 13. Least biased mixes of d6, d8, and d10.

7.2 Mixed Dice Unsorted, A Wins Ties

We can do the same type of experiment for all
variations of Player B rolling unsorted a mix of
5 d6s and d8s against Player A’s 5d6, getting the
results as shown in Figure 14. By using 2d6 and
3d8, we can reduce the bias down to a small 1.61%
in favour of Player B.

By trying all variations of 5 d6s, d8s, and d10s,
we find that there are 5 cases where the bias is
kept under 10%, which are shown in Figure 15.
Rolling 2d6 and 3d8 is still the lowest overall
bias; rolling 3d6/1d8/1d10 is the lowest bias that
favours Player A.

In conclusion, we can reduce the win bias by
having the unfavoured player roll different sided
dice. Looking at all mixes of five dice composed
of d6, d8, and d10, we found that rolling 5d6
against 2d6/3d8 produced the smallest win bias,
for both rolling sorted and unsorted. In fact, there
was no way to completely eliminate the win bias.
Nonetheless, we will examine one final way to
break ties that will lead to a zero win bias.
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1d6/4d8
0d6/5d8

Game win bias tie % closeness
5d6/0d8 30.68 0.00 0.424
4d6/1d8 20.34 0.00 0.440
3d6/2d8 9.48 0.00 0.450
2d6/3d8 -1.61 0.00 0.452
1d6/4d8 -12.60 0.00 0.446
0d6/5d8 -23.19 0.00 0.434

Figure 14. Mixed d6 and d8 to control bias.
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Game win bias tie % closeness
3d6/2d8 9.48 0.00 0.450

3d6/1d8/1d10 2.97 0.00 0.456
2d6/3d8 -1.61 0.00 0.452
3d6/2d10 -3.73 0.00 0.459

2d6/2d8/1d10 -8.26 0.00 0.453

Figure 15. Mixing d6, d8, and d10 to control bias.

8 Rerolling Tied Dice

We now examine rerolling tied dice as a final way
to break ties. For example, it is quite common to
reroll 1d6 at the start of a game to decide who
goes first. This can be generalized to ndk, but it is
quite cumbersome and this section exists mainly
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as an explanation on why we believe this is inad-
visable in practice. Because rerolling can go on
for many iterations, we use Monte-Carlo simula-
tion to evaluate the odds empirically instead of
exactly, since these games can theoretically con-
tinue indefinitely with increasingly unlikely prob-
ability. We used N=610=60,466,176 simulations
per game, as this is the same number of cases that
evaluated for the other sections (see Appendix
for this calculation). When these are simulated
and not exact values, we use the ≈ symbol in the
figures.

8.1 Rolling Sorted, Rerolling Tied Dice

We first examine the case where we roll a handful
of dice and then sort them from highest to lowest.
Any dice that are not tied are scored first. Then,
any remaining dice that are tied are rerolled by
both players at once in a sub-game.
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5d2 ≈ 0 0.00 ≈ 0.350
5d4 ≈ 0 0.00 ≈ 0.311
5d6 ≈ 0 0.00 ≈ 0.302
5d8 ≈ 0 0.00 ≈ 0.298

5d10 ≈ 0 0.00 ≈ 0.296

Figure 16. Rerolling ties with 5dk sorted.
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Figure 17. Reroll probability for Figure 16.

This process is repeated for any remaining
tied dice in the sub-game, until there are no more
ties. All the scores from the first game and all sub-
games are summed together for the final score.

The resulting score difference distributions
are shown in Figure 16. The battles are all un-
biased and without ties. For 5d4, 5d6, 5d8, and
5d10 the distributions are effectively flat with low
closeness and have approximately the same shape
as when rolling sorted with ties (as in Figure 2)
but now do not permit tie games. Compared to
5d4 and higher, 5d2 has a higher closeness. How-
ever, this closeness comes at a significant cost of
requiring many rerolls, as demonstrated in Fig-
ure 17. This shows that more sides decreases the
probability of a reroll, and with 5d2 or 5d4 there
are significant chances at rolling 2 or more rerolls
for a single battle, which could be cumbersome
for the players in practice. Higher sided dice are
less likely to tie, so the probability of rerolling
decreases quickly when using six or more sides.
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3d6 ≈ 0 0.00 ≈ 0.453
5d6 ≈ 0 0.00 ≈ 0.302

Figure 18. Rerolling ties with nd6 sorted.
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Figure 19. Reroll probability for Figure 18.
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We also examine the effect of changing the
number of dice while holding the number of sides
fixed in Figure 18. The distributions are all flat,
but closeness can be increased by using fewer
dice, as we’ve seen in previous sections. The prob-
ability of rerolls is also affected by the number
of dice, as shown in Figure 19. For 1d6 and 2d6,
the most common outcome is no rerolls. Increas-
ing the number of dice makes rerolls more likely,
but the probabilities of having additional rerolls
decreases rapidly.

8.2 Rolling Unsorted, Rerolling Ties

Finally, we examine the case of rolling n k-sided
dice unsorted when rerolling ties. The dice are
rolled one at a time, and any time there is a tie,
the two dice must be rerolled until they are no
longer tied. This occurs for each of the n dice.
In practice, this is unlikely to be much fun for
the players, but we present the analysis here for
completeness.
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5d2 0.00 0.00 0.447
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5d10 0.00 0.00 0.447

Figure 20. Rerolling ties for 5dk unsorted.
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Figure 21. Reroll probability for Figure 20.

Because neither player is favoured, the met-
rics can be analytically calculated from the bi-
nomial distribution (n

w)pw(1 − p)n−w with w be-
ing the number of wins for Player A in the bat-
tle, n dice rolled, and probability p = .5 (no
matter the value of k) of Player A winning each
point. Given a score difference d, we can calculate
w = (n + d)/2.

In Figure 20 we see that the score difference
distribution is identical for all dice, no matter how
many sides. The battle is unbiased, with no ties,
and has a closeness of .447. However, they do
not have the same number of rerolls, as shown
in Figure 21, generated with Monte Carlo simu-
lation. To reduce rerolls, the game designer can
use higher sided dice.

The closeness can be increased by reducing
the number of dice rolled, as shown in Figure 22.
Rolling fewer dice also reduces the probability of
rerolls, as shown in Figure 23.
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2d6 0.00 50.00 0.707
3d6 0.00 0.00 0.577
5d6 0.00 0.00 0.447

Figure 22. Rerolling ties for nd6 unsorted.
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Figure 23. Rerolling ties when rolling unsorted.
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8.3 Sorted, A Wins Ties, Rerolls Highest

We can make a hybrid case, where A wins all
ties but must reroll when A rolls the die’s highest
value (e.g. a 6 on a 6-sided die). This effectively
means that Player A is rolling a k − 1 sided die
while Player B is rolling a k sided die. This gives
an advantage to Player B to make up for the ad-
vantage that Player A has when breaking ties.

Interestingly, this has the same effect as in the
previous reroll sections, for both rolling sorted or
unsorted. Therefore, the plots are the same as in
Figures 16, 18, 20, and 22. However, only Player
A has to reroll dice, and Player B can keep the dice
untouched no matter what they roll. Therefore,
there are many less rerolls in total.

We can show analytically why this is unbi-
ased for the simple case of one k-sided die. Player
A will reroll when rolling a k, which is the same as
rolling a k − 1 sided die. If Player A rolls a value
of i with probability 1/(k − 1), then they win
when Player B rolls a value ≤ i with probability
i/k, since A wins ties. Calculating the expected
number of wins for Player A, over all values of i
from 1 to k − 1 we have:

k−1

∑
i=1

1
k − 1

i
k
=

1
k(k − 1)

(k − 1)(k)
2

=
1
2

(4)

which is independent of k, and always 1/2.
When breaking ties by rerolling, we get un-

biased results, but at the cost of requiring the
players to reroll, which can take longer. How-
ever, by using higher sided dice or fewer dice,
the designer can mitigate the expected number
of rerolls. Because other tie-breaks presented in
this paper do not require extra rolls, we suggest
following another approach to breaking ties.

9 Risk & Risk 2210 A.D.

We can use the results of this paper to examine
how the original Risk compares with the popular
variant Risk 2210 A.D. [19]. In both games, the
players roll sorted dice and the defender wins
tied dice, which we showed in Section 5.1 gives
a strong advantage to the defender when rolling
the same number of dice. A game with the de-
fender having an advantage can lead to a static
game where neither player wants to attack.

To counteract this, both games allow the at-
tacker to roll an extra die (3d6 v 2d6). We show
in Section 6 this flips the advantage towards the
attacker. This advantage encourages players to
play more aggressively, as its better to be the at-
tacker than the defender.

In Risk 2210 A.D. special units called com-
manders and space stations will swap in one or
more d8 instead of d6 when engaging in battles.

As we showed in Section 7, using mixed dice
biases the win rate towards the player rolling
higher valued dice, which can be either be used
by attackers to have a stronger advantage (less
closeness but more predictability) or by defend-
ers to even out the bias inherent in letting the
attacker roll more dice.

As we’ve shown in this paper, the rules in
dice games require careful balancing as the exact
number of dice and number of sides can often
have a large impact on the statistical outcome of
the battles. Risk and Risk 2210 A.D. are no ex-
ception and they appear to have carefully tuned
dice mechanics to have reasonable win bias and
closeness values.

10 Conclusion

We have demonstrated the use of win bias, tie
percentage, and closeness to analyze a collection
of dice battle variants for use as a component in
a larger game. We introduce closeness, which
is related to the precision statistic about 0, and
matches the intuitive concept of a game being
close. We have not seen this statistic used before
to analyze games.

By examining the results of the previous sec-
tions, we can make some general statements
about this category of dice battles where the num-
ber values are compared.

In Section 3, we showed that when allowing
ties, rolling dice unsorted results in higher close-
ness, and therefore a lower chance of games with
large point differences; however, this comes at
the cost of increasing the tie percentage. Using
fewer sides on the dice increases closeness, but
also increases the tie percentage. Using fewer dice
increases closeness, but again generally increases
the tie percentage.

Battles that end tied with a score difference
of 0 can be broken with a coin flip or other 50/50
random event, as discussed in Section 4. How-
ever, we also wanted to explore rule changes that
would cause odd-numbers of dice to never end
in a tie. Breaking ties in favour of one player,
as shown in Section 5, eliminates ties but creates
a large win bias, although this can be reduced
with more sides on the dice. This bias occurs for
both rolling sorted and unsorted, although rolling
unsorted results in higher closeness and slightly
lower win bias.

To reduce this win bias, in Section 6 we have
the favoured player roll fewer dice. Rolling one
fewer die is the best choice that leads to the small-
est win bias, and having both players roll more
dice also reduces the win bias (but decreases the
closeness).

In Section 7, we reduced the win bias by hav-
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ing the unfavoured player roll different sided
dice. Looking at all mixes of five dice composed
of d6, d8, and d10, rolling 5d6 against 2d6/3d8
produced the smallest win bias, for both rolling
sorted and unsorted. However, there was no way
to completely eliminate the win bias.

Finally, in Section 8, we examined a method
of breaking ties by rerolling. This gives unbiased
results, but at the cost of requiring the players
to reroll, which can take longer. By using higher
sided dice or fewer dice, the designer can reduce
the expected number of rerolls that will occur,
although we recommend other tie breaking meth-
ods that are less cumbersome for the players.

One suprising outcome of this study is that
nd2 sorted with ties may be an under-used dice
mechanic for games. This has high closeness, and
can be easily done by throwing 2-sided coins or
stick dice, subtracting the number of heads from
the number of tails. Stick dice do not have the
practical problems that round coins do, as dice
sticks with flat edges don’t roll off the table easily.

The analysis in this paper focuses on compar-
ing dice values, but we are also doing a similar
study of hit-based dice games including analyz-
ing the effect of critical hits, following the same
framework presented here.

Additionally, for finer grained control over
the experience, a game can instead use a bag of
dice tokens (e.g. small cardboard chits with a
dice face printed on them) or a deck of dice cards
to enforce that certain distributions are obeyed
with local representation – this is choosing with-
out replacement instead of the typical choosing
with replacement that occurs with dice. We are
currently experimenting with examining similar
games that use bags of dice tokens, using an ex-
haustive analysis similar to that done here.

In summary, there is no perfect solution to
the dice battle mechanic, and a designer must
make a series of tradeoffs. We hope that this pa-
per can provide some quantitative guidance to a
designer looking for a specific type of game feel
when using dice. For a designer that wishes to
use rules that we did not discuss in this paper,
we hope it would not be difficult to use the same
technique to evaluate how the players might ex-
perience the distribution of score differences by
measuring win biases, ties, and closeness.
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Christoffer Holmgård is a Postdoctoral Asso-
ciate at the NYU Tandon School of Engineer-
ing. He researches player modeling, human-
like agents, procedural content generation, and
applied games and does video game develop-
ment. Address: NYU Tandon School of En-
gineering, 6 MetroTech Center, Brooklyn, NY
11201, USA. Email: holmgard@nyu.edu

Julian Togelius is Associate Professor of Com-
puter Science at the NYU Tandon School of En-
gineering and co-director of the Game Innova-
tion Lab. Address: NYU Tandon School of En-
gineering, 6 MetroTech Center, Brooklyn, NY
11201, USA. Email: julian.togelius@nyu.edu

Andy Nealen is Assistant Professor of Com-
puter Science at the NYU Tandon School of En-
gineering, co-director of the Game Innovation
Lab, and co-creator of the video game Osmos.
His research interests are in game design and
engineering, computer graphics and perceptual
science. Address: NYU Tandon School of En-
gineering, 6 MetroTech Center, Brooklyn, NY
11201, USA. Email: nealen@nyu.edu

Appendix

In this appendix, we give analytical results for the
probabilities and number of possible outcomes
for many of the games studied in this paper. A
more complete coverage of these probabilities
and combinatorics can be found in [18].

A fair k-sided die has equal probability of
rolling each of its k sides, so the probability of
rolling any particular number is 1/k. Therefore,
the total probability of rolling a value v or less is
∑v

i=1 1/k = v/k.
If we roll n dice unsorted, there are kn dif-

ferent ways to roll the dice. Each way of rolling
the dice, since the order matters, has an equal
k−n chance. For example, if we roll 5 6-sided
dice unsorted, there are 65 = 7, 776 possible out-
comes each with 1/7,776 probability. If Player
A is rolling a dice, and player B is rolling b dice,
then there are kakb = ka+b possible outcomes. So,
if each side rolls 5 6-sided dice unsorted, there are
610 = 60, 466, 176 possible games that can occur,
each equally likely. Rolling 5d10 against 5d10 has
10,000,000,000 different possible outcomes.

If we roll the n dice sorted, then we can de-
scribe the probabilities using the multinomial dis-
tribution, a generalization of the binomial distri-
bution when there are k possible outcomes for
each trial. If one knows the outcome of a sorted
roll had xi copies of i (i.e. x1 1’s, x2 2’s, etc.), such
that x1 + x2 + ... + xk = n, the number of ways
that particular outcome could have been rolled is:

n!
x1!x2!...xk!

(5)

The probability of rolling that outcome is:

n!
x1!x2!...xk!

k−x1x2...xk (6)

For rolling n k-sided dice sorted, the number
of different possible results a player can roll is:(

n + k − 1
k − 1

)
(7)

For example, for 5d6, there are (5+6−1
6−1 ) =

(10
5 ) = 252 unique ways to roll the dice, although

these are not of equal probability. For two play-
ers, there are 2522 = 63, 504 ways to evaluate the
game. This means that the rolling sorted calcula-
tions can be made much faster by only calculating
each unique outcome once, but then multiplying
the results by Equation 5, the number of ways
each result can occur.
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