
AI as Evaluator: Search Driven Playtesting of Modern Board Games

Fernando de Mesentier Silva and Scott Lee and Julian Togelius and Andy Nealen
Game Innovation Lab - New York University - Tandon School of Engineering

5 Metrotech Center
Brooklyn, New York 11201

Abstract
This paper presents a demonstration of how AI can be use-
ful in the game design and development process of a modern
board game. By using an artificial intelligence algorithm to
play a substantial amount of matches of the Ticket to Ride
board game and collecting data, we can analyze several fea-
tures of the gameplay as well as of the game board. Results
revealed loopholes in the game’s rules and pointed towards
trends in how the game is played. We are then led to the con-
clusion that large scale simulation utilizing artificial intelli-
gence can offer valuable information regarding modern board
games and their designs that would ordinarily be prohibitively
expensive or time-consuming to discover manually.

INTRODUCTION
Modern board games pose interesting research challenges
with their varying levels of strategic complexity, multiplayer
aspect and usage of stochasticity, hidden information and
feedback loops. As board games continue to increase in pop-
ularity (Griepp 2016) an increasing number of games are
being released every year, and for many of these games, the
design relies on ensuring that the gameplay experience feels
fair for all players. Dominating strategies, an unbalanced
deck of cards or a board that allows for situations not cov-
ered by the rules are then elements that impact the reception
of a game. As such, a substantial portion of a game’s design
process is spent making changes to repair and avoid these
unwanted scenarios.

Testing and experimentation are essential aspects of game
design. Designers can only test for scenarios that they can
think of, and design flaws are inevitable in any system of
considerable complexity. Ideas and mechanics that work in
theory or on paper can fall apart once the playerbase finds a
weakness it can exploit. Such scenarios are often so obscure
and ultimately impractical that they are harmless to the state
of the game, but they can occasionally give way to optimal
strategies or undesirable gameplay. It is often in a designer’s
best interest to minimize the number and severity of these
weaknesses or loopholes in the game’s logic. To this end,
AI can accelerate the process of playtesting by exploring the
game state space to find exploits and scenarios that the de-
signer has yet to anticipate.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Another factor that designers look for in their games is
competitive balance. Competitive games that reward skilled
play result in players feeling more fulfilled, while simultane-
ously motivating players to improve further (Kraaijenbrink
et al. 2009). Additionally, a lack of balance is problematic.
Games with widely known optimal strategies tend to have its
playerbase converging on a single playstyle or emphasizing
a single game mechanic, condemning divergent playstyles
as ineffective or extraneous mechanics as worthless. By hav-
ing AI that can simulate different powerful strategies under
a reasonable amount of time, we can evaluate their perfor-
mances over a large number of simulations, address more
obvious imbalances and see how certain changes would af-
fect gameplay before having human players experience it.

It is important to note that as the complexity of a game
increases, the difficulty of maintaining competitive balance
and game integrity quickly escalates. Each variable in a
game needs to be inspected for its impact on the system as
a whole. Ensuring that a game is balanced, or its logic is
sound, therefore requires a great deal of testing, and even
then, individually accounting for each and every possible
scenario is a herculean effort. This serves to reiterate our
proposal to use AI to lighten the workload from fine tuning
game features. As opposed to more traditional games such as
Chess and Go, which are exclusively 2-player games, many
modern board games are tailored to work with a varying
number of players. Changing the number of players usually
affects different aspects of the game. The same can be said
for changing a component or rule. Those changes, for in-
stance, may impact the number of turns, and so the length
of the game, as well as how effective strategies are. With
the use of AI agents we can simulate the game in different
scenarios and account for the affect they have on gameplay.

This paper is focused on exploring the potential uses of ar-
tificial intelligence algorithms to aid in the design process of
modern board games. For this work we use the game Ticket
to Ride and several of its expansions as test cases. For such,
we describe 2 gameplaying agents based on common strate-
gies used by players. We show how AI agents are able to find
scenarios that the rulebook of the game doesn’t cover. We
also compare the performance of the agents over 7 different
board and deck packs, analyze their characteristics and how
they impact the agents strategies. Then we propose future
work for this project and other ways in which AI can have



an impact on the design process of modern board games.

RELATED WORK
Modern board games are not new to AI research. Guhe
et al. presented a framework to compose agents for the
game Settlers of Catan (Guhe and Lascarides 2014). Pre-
vious work has demonstrated that it is possible to tailor an
agent’s strategy to a game and evaluate its behavior in com-
parison to human players. Szita et al. and Chaslot et al.
both present Monte Carlo Tree Search (MCTS) agents for
playing Settlers of Catan and compare their performance
to heuristic driven AIs (Szita, Chaslot, and Spronck 2009;
Chaslot et al. 2008), and Pfeiffer presents a reinforcement
learning approach to playing the game (Pfeiffer 2004). The
agent presented is tailor-made using both learning and prior
knowledge. Other work compares multiple approaches of
agents to one another in the game Carcassonne (Heyden
2009). The work focuses on the 2-player variant of the game
and discusses variations of MCTS and Minimax search for
playing the game. Robilliard et al. demonstrates the study
of using MCTS to play the game 7 Wonders (Robilliard,
Fonlupt, and Teytaud 2014). Huchler presents how differ-
ent enhancements made to MCTS can improve its perfor-
mance when playing Ticket to Ride (Huchler 2015). Differ-
ent player agents play against a cheating agent, one that has
access to all hidden information, to benchmark their results.

The idea of algorithmically optimizing balance in clas-
sic board games and card games has been explored. Hom et
al. explored AI techniques to design balanced abstract board
games by altering game rules by using a genetic algorithm to
search for possible rules in the game space (Hom and Marks
2007). The work defines a good balanced game in terms of
the advantage of moving first and how often agents draw.
Krucher showed AI that had the ability to generate more in-
teresting and complicated elements of the game (Krucher
2015). In this work the author algorithmically balances his
collectible card game implementation via rating and modify-
ing cards through iterations of an AI agent playing it. These
ratings were then used by the agent when deciding what ac-
tion to perform. Jaffe et al. uses a set of balance metrics to
find the importance of various features of the game (Jaffe
et al. 2012). The authors apply these to a perfect informa-
tion educational card game where they automatically track
and measure these features. Dormans presents a framework
that can describe the flow of resources throughout a game,
describing its internal economy and through simulations
enabling balance when analyzing the efficiency of various
strategies on the early stages of a game’s design (Dormans
2011).

Mahlmann et al. discusses balance evaluation on the
card game Dominion (Mahlmann, Togelius, and Yannakakis
2012). This work utilizes three different AI agents, each with
different fitness functions and skill levels to determine a bal-
anced card set. Artificial neural networks (ANN) were used
for evaluating the state of nodes in the MCTS, as well as the
general state of the game board. It was found out that certain
cards were present in the winning sets of all three AI agents,
and thus it was concluded that these cards made the game
more balanced independently of gameplay style. This work

demonstratres that this method of game balance evaluation
has credence in designing and balancing other games.

Video game research has tackled the idea of having AI
and Machine Learning algorithms act as a co-designer, giv-
ing inputs and suggestions during the process of develop-
ment. This research field is called mixed initiative design
(Yannakakis, Liapis, and Alexopoulos 2014). Liapis et al.
present Sentient Sketchbook (Liapis, Yannakakis, and To-
gelius 2013), a tool where users create maps for Real Time
Strategy games and have suggestions offered by the system.
Smith et al. describes a system for developing 2D platformer
levels (Smith, Whitehead, and Mateas 2010). In it the user
edits key aspects of the level and the tool fills the rest of
the level while guaranteeing that it is playable. Shaker et al.
show a tool for designing levels for the video game Cut the
Rope (Shaker, Shaker, and Togelius 2013). It is capable of
checking a level for playability, completing a level after a
partial design input from the user or automatically generat-
ing a new level.

There are also other approaches to how AI can aid the pro-
cess of game design. Browne et al. explore this avenue by
using an evolutionary algorithm to design games (Browne
and Maire 2010). By evaluating and automatically measur-
ing the quality of a game’s concept (Browne 2008), the al-
gorithm was able to create a novel and interesting abstract
board game that was later published. Salge et al. uses an
adaptive AI to model the concept of Relevant Information
and indicate how it can relate to a game’s design (Salge and
Mahlmann 2010). Smith et al. introduces a game engine that
can generate gameplay traces to identify the underlying be-
havior of a game (Smith, Nelson, and Mateas 2010). Nel-
son argues that not all information extracted from a game
needs to derive from empirical playtesting (Nelson 2011).
The author demonstrates seven other strategies to extract in-
formation from games. Nielsen et al. investigates the idea of
characterizing a game’s quality through the relative perfor-
mance of multiple general game playing algorithms (Nielsen
et al. 2015). Isaksen uses automatic play testing to explore
the game space of the video game Flappy Bird and find in-
teresting variants of the game that alternate in game feel
and difficulty among other features (Isaksen, Gopstein, and
Nealen 2015; Isaksen et al. 2015). AI and Machine Learning
is also used by de Mesentier Silva et al. to search for sim-
ple and effective novice level gameplaying heuristics for the
card game Blackjack (de Mesentier Silva et al. 2016).

Although work has been done in AI agents for modern
board games, in balancing video games, card games and
classical board games and in tools for AI co-authored de-
sign, no research, to our knowledge, has tried to explore bal-
ancing, feature analysis and automated playtesting for the
purpose of aiding the design of a modern board game.

TICKET TO RIDE
Ticket to Ride is a two to five player competitive board game
designed by Alan R. Moon, published by Days of Wonder
in 2004. The game has won multiple awards and sold over
3 million copies by 2014 (Days of Wonder 2004). Multi-
ple versions of the game have been released since. The re-
sults shown in this paper use the standard game and four



of its variants/expansions. Out of the expansions used, three
change the board and destination deck with which the game
is played and add a couple new rules to the ruleset, they
are Europe, India and Nordic Countries expansions, and the
other changes the original destination deck in three differ-
ent ways creating three new variants while using the board
of the standard game, the USA 1910 expansion. The rules
described below are the ruleset for the standard game, ex-
pansions might change details in the rules or add new ones.

In Ticket to Ride, players are trying to score the most
points. The game is composed of 4 elements: Train Cards,
Destination Cards, Train Tokens and the Board. To score
points, players collect Train Cards that allow them to use
their Train Tokens to connect different cities on the Board.

The deck is comprised of 110 Train Cards: 12 for each
of the basic colors, Red, Blue, Green, Yellow, Pink, Or-
ange, White and Black, and 14 locomotive, or wild, cards.
The wild cards are unique in that they can take the place of
any other color of Train Card. While each player has their
own pool of Train Tokens, the deck of unique Destination
Cards and the Board are shared by all players. Each player
has their own hands, which are hidden from other players,
where they keep the Train Cards and Destination Cards they
collect. Each player’s Train Token pool size remain public
throughout the game.

Figure 1: The USA map which portrays the board used in
the original game. Each city is represented by a circle. Each
route is a sequence of rectangles. The number of rectangles
is equal to the route size and the color of the rectangles por-
tray the route’s color.

The board represents the cities in the game and their con-
nections, called routes. Two cities connected by a route are
called adjacent cities. There can be either 1 or 2 routes con-
necting the same 2 cities. Each route has two attributes: color
and size. The route’s color can be any of 9 different possi-
ble, either one of the 8 basic colors of the game or a special
color: Grey. The basic colors are represented by the differ-
ent Train Cards, so to claim a route of a basic color, Train
Cards of said color are needed. Meanwhile, a Grey colored
route can be claimed with any color of Train Card, as long
as all the cards used are of the same color. The size of route

determines how many of a specific Train Card a player must
have to claim that route. Figure 1 shows the board used to
simulate games in this paper.

Claiming a route between two cities will score the player
points, although much more score can be achieved through
connecting two specific non-adjacent cities required by a
Destination Card. Players complete a Destination Card by
claiming multiple routes that together connect the two cities
listed on the card. The Destination Cards each player has are
kept hidden for the others until the game has ended, when
they are revealed and their points are tallied. If at the end of
the game the player has managed to connect the two cities
with only routes she claimed he gains the number of points
written on the card. If she fails to do so, she loses that same
amount of points.

One player is selected at random to be the first player.
From them on, each player will then execute one of the 3
possible moves when their turn comes. Once they are done,
the play proceeds to next player in clockwise fashion. The
possible moves a player can take on their turn are: Draw
Train Cards, Draw Destination Cards or Claim a route.

When drawing Train Cards, a player can choose to pick
one of the cards currently face up or to draw the card at the
top of the deck to add to her hand. If she chose a face up card,
that card gets immediately replaced by revealing the next
top card of the Train deck before proceeding. When drawing
Train Cards, the player will take 2 cards on their turn, with
the exception of only drawing 1 in case he chooses to draw a
face-up wild card. If a card would have to be drawn, but the
Train deck is depleted the Train Card discard pile is shuffled
and becomes the new Train deck.

When drawing Destination Cards the player gets the top 3
cards of the destination deck. The player then looks at the
cards she drew and chooses to keep 1, 2 or all the cards
drawn, which are added to their hand. She then returns the
cards she decided not to keep.

To claim a route, a player must have Train Tokens equal
to or higher than the size of the route they want to claim,
and that route must have not been claimed by anyone. She
must then discard from her hand a number of Train Cards
equal to the size of the route and whose color matches the
color of such route. She then moves on to placing her Train
tokens on the route to mark it as have been claimed by her.
The player also immediately scores points proportional to
the size of the route claimed: A route of size 1 rewards 1
point, size 2 rewards 2 points, size 3 rewards 4 points, size 4
rewards 7 points, size 5 rewards 10 points and size 6 rewards
15 points.

If after claiming a route a player is left with 2 or less
Train Tokens in her pool, she announces the last round of the
game. Then, every player, including the one that announced,
gets to make one more move. After everyone is done, the
game ends, every player reveals their Destination Cards and
the points are tallied.

Points obtained, or lost, from the Destination Cards are
added to the ones each player got from claiming routes.
In addition to those, the player with the longest continu-
ous route of unique train tokens is awarded an additional 10
points. After adding all the points, the player that achieved



the highest amount of points wins the game.

PLAYER AGENTS
To evaluate different aspects of Ticket to Ride, we decided
to implement multiple player agents that would approach
game strategies differently. In addition to tree-search based
algorithms A* and MCTS agents, we decided to create two
agents developed specifically for playing this game, based
on strategies commonly used by players. The use of such
agents are justified by several reasons. Coming closer to
replicating the human play styles would give a more inter-
esting reflection of a common play of the game, with our
objective being aiding the designer to tailor the game which
ultimately is going to be played by humans. The two agents
described are much cheaper in terms of computational time
when compared to our other experiments using A* and
MCTS agents. The agents shown are also the most well-
performing agents we know of, outperforming A* agents
that search the game states for actions and regular MCTS
agents, a pattern that we believe to be a consequence of the
state space size for Ticket to Ride. The game has a very high
branching factor which makes it difficult to explore enough
states to choose a good move in a reasonable amount of time.
More than that, it is hard to formulate a heuristic that is ca-
pable of evaluating a game state to achieve good play. That
being said, we believe that it is possible to implement modi-
fications to MCTS to make it a more effective player, similar
to what was done for Super Mario Bros in (Jacobsen, Greve,
and Togelius 2014) and to Ticket to Ride in (Huchler 2015);
alternatively, it might be possible to use evolutionary com-
putation to play the game well, as we have seen promising
results with this approach in other games with high branch-
ing factors (Justesen, Mahlmann, and Togelius 2016).

The two agents that we are using are described below.
They represent very different approaches to the game, with
the first agent playing the game more conservatively, trying
only to complete the routes is has been assigned, whereas the
second plays the game more aggressively and proactively
draws new destination cards. We believe these two agents
span a very important axis of Ticket to Ride playstyles.

Route Focus Agent (RFA)
This agent tries to fulfill the Destination Cards that it re-
ceives at the beginning as fast as it can while also try to
take long routes on the board to score additional points. At
the start of the game, the agent keeps all of the Destination
Cards it was dealt during the setup of the match. Then, in
every subsequent turn, it evaluates all Destination Cards it
has not completed yet. For each Destination, it looks for the
shortest path between the two cities, considering the routes
it has already claimed. It then puts the routes that make up
that path into a priority queue, where their priority is defined
by the function:

P = Rvalue + 2 ∗DRscore

where Rvalue is the amount of points the player scores
just for claiming that route. DRscore is the point value of
the Destination Card that route belongs to. Here the points
related to the Destination Card are doubled to reflect the fact

that if that objective is not completed the player will lose
that amount of points.

If all of its Destination Cards have been completed, it
looks at all of the free routes and puts them in the queue
using the only Rvalue as their priority.

After the agent fills the priority queue, it goes to every
route in the queue and checks if it has the Train Cards to
claim it, and if it does, it returns that as a move. If it can’t
take any of the routes, it checks the color of the highest pri-
ority route. It chooses to draw the face up Train Card that
matches that color, and if that color is not available, it draws
the top card of the deck or a face up wild card.

Destination Hungry Agent (DHA)
This agent focuses on trying to score a large amount of
points by accumulating a large number of destinations to
complete. After selecting the Destination Cards it will keep
from the setup the AI will spend a sequence of turns drawing
more Destination Cards in order to build on the prospective
points it will score by the end of the game. It will evaluate
how to complete Destination Cards by checking the shortest
route between cities, where the shortest route will be the one
that needs the least amount of Train Tokens.

When deciding which Destination Cards to keep, the al-
gorithm looks at all combination of cards it could keep. It
them puts all cities present in the candidate cards into a pool
together with the cities in the Destination Cards it already
owns. It computes shortest paths between all the cities in
these cards until it finds a list of routes that connects them
all. It then computes how many trains are needed to claim
all these routes, Ntrains, and how many points the agent
will score by claiming them, PRvalue. If Ntrains is bigger
than the number of trains the player has, it will discard se-
lecting these as a viable option. The selection of the cards
are based on a fitness function. The fitness function tries to
reward choosing cards that have cities closer together and
punishes making a choice for which take a lot of trains to
complete in comparison to the number of points it awards.
The fitness function is as follows:

F = Dscore+PRvalue

Ntrains

where Dscore is the aggregate score of the Destination
Cards. The agent then calculates how many of each color
of Train Card it will need, to guide the decision of which
to draw. It stops drawing new Destinations when the current
set it holds already meets a certain threshold of Train Tokens
needed. The threshold allows for a high number of Tokens,
but also guarantees that the algorithm can have spare trains
in case it needs to change the routes it will take in conse-
quence of another player claiming a route it wanted.

Then, at every turn it will check if it can claim a route it
needs. If it can claim more than one route it wants, it will
prioritize routes that are of the color it needs the most to
complete the objective set. If it can’t claim any route, it will
choose to draw Train Cards. It will decide which color to
draw based on which it needs the most overall. If it already
claimed all routes it wanted, the agent will look for claiming
routes that will make it trigger the end of game condition the
fastest.



Table 1: Data from the Destination Hungry Agent (DHA) versus Route Focus Agent (RFA) games. Ties are not shown for the
Win Ratio and are the reason totals don’t sum up to 1.

Variant Agent Win Ratio Avg. Score Normalized mean score
DHA 0.75 102.271 0.7284Standard RFA 0.245 75.311 0.5486
DHA 0.767 109.97 0.7537USA 1910 RFA 0.226 79.016 0.5642
DHA 0.816 97.13 0.6521Big Cities RFA 0.181 58.334 0.4741
DHA 0.853 116.013 0.7749Mega Game RFA 0.146 55.204 0.4798
DHA 0.585 82.883 0.7409Europe RFA 0.407 76.585 0.6312
DHA 0.631 73.935 0.6129Nordic

Countries RFA 0.365 51.688 0.5753
DHA 0.523 86.848 0.7376India RFA 0.464 87.744 0.6146

ANALYSIS OF THE GAME
The analysis of the game was performed by having the RFA
play against the DHA in 1,000 games in each variant of the
game. Overall we have 7 variants of the game: The standard
game, USA 1910, Mega Game, and Big Cities use the USA
board that comes with the standard game, whereas the Eu-
rope game, the Nordic Countries game and the India game,
all have their own specific boards and Destination Cards.

AI Match-up
In order to evaluate how our agents fare when playing the
game, we looked at the simulations in all the variants. We
compiled the most interesting aspects in Table 1.

From looking at the data we can see that DHA has a
higher Win Ratio in every variant of the game, but while
it is dominant in every variant played on the Standard board
(Standard, USA 1910, Big Cities and Mega Game), the win
ratios between the two players are much closer in the vari-
ants that use other boards (Europe, Nordic Countries and
India). We can try to answer two questions at this point: Do
we have enough confidence to claim that DHA has a domi-
nant strategy over RFA? Does the board impact the outcome
of the match?

In terms of the dominance of DHA over RFA, we can turn
to a binomial test to test the statistical significance of this
hypothesis. Through the binomial test we can verify p <
0.0001, that gives us a high confidence to assure that DHA
does in fact execute a dominant strategy over RFA.

As to the impact the board has on the outcome of the
match, we use the Chi-square test to try and refute the null
hypothesis that our data is independent from the board the
game is played in. The Chi-square test reveals p < 0.0001.
We can then make a strong argument that the board holds
significant influence over the outcome.

The difference in win ratio among the maps gives us
room to analyze what aspects make them different. A me-
chanic common to all boards but the standard is the under-
ground routes. These add more randomness to the game:

when claiming one of these routes, a player must turn the top
3 cards of the Train Deck face-up and depending on what he
draws, the number of cards required to claim that route may
temporarily increase. This stochastic event may be responsi-
ble for evening out the odds between the two strategies im-
plemented by the agents. The boards other than the standard
are also known to promote more adversarial play. This could
also point as to why DHA is more dominant in the variants
played on the standard map.

Scenarios not covered by the rules

Over the course of the experiments, the Agents encountered
two scenarios that are not described on the rules of the game.
Both scenarios created situations in which one or both play-
ers could not make any moves.

No Train Cards This scenario arises when one player ex-
clusively draws Train Cards, and the other player fails to fin-
ish the game before all Train Cards are depleted. If all of the
Train Cards have been drawn, but the player lacks the neces-
sary Train Cards to claim any routes, then they are forced to
draw Destination Cards, forcing them to decrease their own
score. Once the Destination Cards have been depleted, the
player is no longer able to draw any more cards, nor is he
able to claim any routes.

3 Wild Loop This scenario involves a rule involving face
up Train Cards. When 3 or more of the face up Train Cards
are wild cards, the face up cards are discarded, and 5 new
cards are added. If both players exclusively draw non-wild
Train Cards, then at some point, the deck will consist ex-
clusively of wild Train Cards. At some point, the wild cards
will appear in the face up set, which will prompt a reshuffle.
However, if there are no other cards in the Train Card deck,
then the wild cards will reappear in the face up set, prompt-
ing another reshuffle. The reshuffle cannot end because there
are no other cards in the deck.



Figure 2: The bar chart for the frequency in which the winner of a match on the standard board takes a specific route. On the
y-axis are the number of games in which the winner took the route, out of 1,000 games. The labels on the x-axis show the
routes, named after the two cities it connects, with its length in parenthesis.

Winning Routes

Fig. 2 shows the distribution of routes claimed by winning
players over the course of the simulations on the standard
board. As can be seen, there is substantial variation between
the routes, indicating that as a whole, winning agents favored
certain routes over others. Several plateaus are also visible
in the distribution, implying a tiered nature to the value of
connections in the game board. There are two interesting
features to note about the 9 connections that make up the
highest plateau. First, routes of length 1 are disproportion-
ately represented in this cluster relative to its quantity on the
game board. Roughly 6 percent of all routes on the board
are cost 1, yet it makes up 44 percent of the highest tier of
routes. While there are 4 routes of cost 2, they are the most
common type of route on the board, and so the representa-
tion is approximately proportionate.

Also of note in this cluster is the set of cities the routes
connect. Toronto, Pittsburgh, and Seattle each have at least
two connections in the top cluster. These three cities are no-
table for having a substantial number of connections. How-
ever, Helena, Denver, and Atlanta all have more connections
than Seattle, yet no connections to them appear in the top
cluster. The reason for this is currently unknown and bears
further investigation, but the data indicates that these loca-
tions hold some particular value in gameplay.

Undesirable Cities

Fig. 3 is a heatmap displaying the frequency with which
cities were ignored over the course of the experiment. For
a city to be counted as ignored, all of its connections must
be unclaimed. The implication behind an unclaimed city is
that it is neither a destination nor a city through which a des-
tination can be reached optimally. While unclaimed cities
can change based on Destination Cards, a large number of
simulations can reveal trends in the overall value of the city
and its connections.

Particularly surprising is the frequency with which Wash-
ington is ignored over the course of the experiment. The
values for other undesirable cities such as Las Vegas and
Miami are understandable, because the former has only 2
connections and the latter is expensive to reach. However,
Washington has 3 connections, all of which are inexpensive
routes to reach key cities such as New York and Pittsburgh.
One possible explanation is the fact that Washington is not
on any of the Destination Cards, meaning that at most, it will
be used as a passage to other cities. It is also worth noting
that Pittsburgh is a more connected alternative to Washing-
ton for players attempting to connect Raleigh to New York.
Under this assumption, it makes sense that Washington is
undesirable, because Pittsburgh is simply a more attractive
alternative in any given situation.



Figure 3: A color map of how often a city is claimed by players. A claimed city is one that has at least one route connecting it
to an adjacent city claimed by the end of the game. On the map, the darker the city color is, the less desirable it is, meaning,
there were more games where no routes connecting to it were claimed.

DISCUSSION AND CONCLUSION
With this work we were able to identify and analyze key as-
pects of the very popular modern board game Ticket to Ride
and several of its variants. By emulating strategies through
intelligent agents, we were able to simulate a concrete num-
ber of matches that allowed us to investigate the intricacies
behind the game’s dynamics. The results demonstrate that
large scale AI-based testing and exploration has the potential
to be useful in analyzing concrete loopholes in game rules,
assessing features of its components and investigating more
abstract strategic biases. This is potentially useful because it
gives the designers the ability to promote certain strategies
by testing to see how well it performs in the game they are
creating, and tuning the game accordingly. This provides a
great deal of freedom to designers who have a specific vision
for their game’s strategic landscape.

So far, we were only able to generate sizable amounts of
data for the Destination Hungry and Route Focus Agents.
Because of this, the data is biased toward those playstyles.
We feel that the optimization requirements are general
enough that the effect of this bias is not too severe, but we
would ideally have a wider variety of algorithms, to confirm
that these values would persist.

FUTURE WORK
We intend to investigate the possibility of collecting large
amounts of data from a wider variety of algorithms. We also

have reason to believe that this methodology could act as an
effective evaluation function for an evolutionary algorithm
designed to tune values in a game. This would work to au-
tomate a tedious but still essential step in the game design
process. In addition to testing for fairness and rule integrity,
designers could also use AI to promote certain playstyles,
by tuning a game such that certain strategies play more ef-
fectively than others.

We believe that the work presented here may be useful
for developing a more robust system that aids modern board
game designers. We wish to build on the work presented
to construct a system that explores the flexibility and con-
straints of the design. The designer could test how the sys-
tem would react to a new constraint, such as limiting the
number of Train Cards one player can have in her hand. The
designer could also use it to tailor the follow of the game in a
specific way, for example, he could evaluate that the game is
taking more turns than he would like and so ask the system
to change thresholds and make new simulations looking for
a shorter play time.

Another future project we would like to explore is using
our analysis to generate content or change the rules of the
game. By having a set of components and rules that satisfies
the designer, a system could be trained to generate new vari-
ants and expansions, for instance a new board. Another way
of generating a variant would be to have the designer input
a current board and ask the system to test changing its fea-
tures toward a certain direction. For instance, he could give



the system a board and a Destination Deck and ask for it to
be modified in such a way that would force players to claim
routes that would be needed by others, and as such, increase
the tension and interpersonal interactivity of the game.

ACKNOWLEDGMENTS
Authors thank the support of CAPES, Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brazil.

References
Browne, C., and Maire, F. 2010. Evolutionary game design.
IEEE Transactions on Computational Intelligence and AI in
Games 2(1):1–16.
Browne, C. 2008. Automatic generation and evaluation of
recombination games. Ph.D. Dissertation, Queensland Uni-
versity of Technology.
Chaslot, G.; Bakkes, S.; Szita, I.; and Spronck, P. 2008.
Monte-carlo tree search: A new framework for game ai. In
AIIDE.
Days of Wonder. 2004. Ticket to Ride.
https://en.wikipedia.org/wiki/Ticket to Ride (board game)
Accessed: 2016-05-15.
de Mesentier Silva, F.; Isaksen, A.; Togelius, J.; and Nealen,
A. 2016. Generating heuristics for novice players.
2016 IEEE Conference on Computational Intelligence and
Games.
Dormans, J. 2011. Simulating mechanics to study emer-
gence in games. Artificial Intelligence in the Game Design
Process 2(6.2):5–2.
Griepp, M. 2016. Hobby Games Market Nearly 1.2 Billion
in 2015. http://icv2.com/articles/news/view/35150/hobby-
games-market-nearly-1-2-billion Accessed: 2016-10-29.
Guhe, M., and Lascarides, A. 2014. Game strategies for
the settlers of catan. In 2014 IEEE Conference on Compu-
tational Intelligence and Games, 1–8. IEEE.
Heyden, C. 2009. Implementing a computer player for Car-
cassonne. Ph.D. Dissertation, Maastricht University.
Hom, V., and Marks, J. 2007. Automatic design of balanced
board games. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), 25–30.
Huchler, C. 2015. An mcts agent for ticket to ride. Master’s
thesis, Maastricht University.
Isaksen, A.; Gopstein, D.; Togelius, J.; and Nealen, A. 2015.
Discovering unique game variants. In Computational Cre-
ativity and Games Workshop at the 2015 International Con-
ference on Computational Creativity.
Isaksen, A.; Gopstein, D.; and Nealen, A. 2015. Exploring
game space using survival analysis. Foundations of Digital
Games.
Jacobsen, E. J.; Greve, R.; and Togelius, J. 2014. Monte
mario: platforming with mcts. In Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computa-
tion, 293–300. ACM.

Jaffe, A.; Miller, A.; Andersen, E.; Liu, Y.-E.; Karlin, A.;
and Popovic, Z. 2012. Evaluating competitive game balance
with restricted play. In AIIDE.
Justesen, N.; Mahlmann, T.; and Togelius, J. 2016. Online
evolution for multi-action adversarial games. In European
Conference on the Applications of Evolutionary Computa-
tion, 590–603. Springer.
Kraaijenbrink, E.; van Gils, F.; Cheng, Q.; van Herk, R.; and
van den Hoven, E. 2009. Balancing skills to optimize fun in
interactive board games. In Human-Computer Interaction–
INTERACT 2009. Springer. 301–313.
Krucher, J. 2015. Algorithmically balancing a collectible
card game. Bachelor’s thesis, ETH Zurich.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sen-
tient sketchbook: Computer-aided game level authoring. In
FDG, 213–220.
Mahlmann, T.; Togelius, J.; and Yannakakis, G. N. 2012.
Evolving card sets towards balancing dominion. In Evolu-
tionary Computation (CEC), 2012 IEEE Congress on, 1–8.
IEEE.
Nelson, M. J. 2011. Game metrics without players: Strate-
gies for understanding game artifacts. In Proceedings of the
First Workshop on AI in the Game-Design Process, 14–18.
Nielsen, T. S.; Barros, G. A.; Togelius, J.; and Nelson, M. J.
2015. General video game evaluation using relative algo-
rithm performance profiles. In European Conference on
the Applications of Evolutionary Computation, 369–380.
Springer.
Pfeiffer, M. 2004. Reinforcement learning of strategies for
settlers of catan. In Proceedings of the International Con-
ference on Computer Games: Artificial Intelligence, Design
and Education.
Robilliard, D.; Fonlupt, C.; and Teytaud, F. 2014. Monte-
carlo tree search for the game of 7 wonders. In Computer
Games. Springer. 64–77.
Salge, C., and Mahlmann, T. 2010. Relevant information
as a formalised approach to evaluate game mechanics. In
Computational Intelligence and Games (CIG), 2010 IEEE
Symposium on, 281–288. IEEE.
Shaker, N.; Shaker, M.; and Togelius, J. 2013. Ropossum:
An authoring tool for designing, optimizing and solving cut
the rope levels. In AIIDE.
Smith, A. M.; Nelson, M. J.; and Mateas, M. 2010. Lu-
docore: A logical game engine for modeling videogames.
In Proceedings of the 2010 IEEE Conference on Computa-
tional Intelligence and Games, 91–98. IEEE.
Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra:
A mixed-initiative level design tool. In Proceedings of the
Fifth International Conference on the Foundations of Digital
Games, 209–216. ACM.
Szita, I.; Chaslot, G.; and Spronck, P. 2009. Monte-carlo
tree search in settlers of catan. In Advances in Computer
Games, 21–32. Springer.
Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In Proceedings of the 9th
Conference on the Foundations of Digital Games.


