
Interactive Design Exploration of Game Stages
Using Adjustable Synthetic Testers

Hirotaka Suetake
The University of Tokyo

suecharo@g.ecc.u-tokyo.ac.jp

Tsukasa Fukusato
The University of Tokyo

tsukasafukusato@is.s.u-tokyo.ac.jp

Christian Arzate Cruz
The University of Tokyo

arzate.christian@ui.is.s.u-tokyo.ac.jp

Andy Nealen
The USC School of Cinematic Arts

anealen@cinema.usc.edu

Takeo Igarashi
The University of Tokyo

takeo@acm.org

ABSTRACT
Game designers take into account the wide range of play-styles
and skill levels of players to create enjoyable experiences. One
important step in the game design process involves playtests with
professional testers; this process is time-consuming and expensive.
Hence, there exist several methods to create synthetic testers to
test a game automatically. However, one shortcoming is the lack of
realistic-playing with different play-styles and skill levels. In this
paper, we propose a game level authoring tool that incorporates
synthetic testers, which enable the control of play-styles and skill
levels. Furthermore, we utilize visualization techniques to help
assess the difficulty level of each part of the stage. Our user studies
confirmed that our tool was effective for designing game stages
appropriate for a particular type of player.

CCS CONCEPTS
•Applied computing→Computer games; •Computingmethod-
ologies → Game tree search; Artificial intelligence; • Human-
centered computing → Graphical user interfaces.

KEYWORDS
Interactive stage design and editing, Bot, Playtest
ACM Reference Format:
Hirotaka Suetake, Tsukasa Fukusato, Christian Arzate Cruz, Andy Nealen,
and Takeo Igarashi. 2020. Interactive Design Exploration of Game Stages
Using Adjustable Synthetic Testers. In International Conference on the Foun-
dations of Digital Games (FDG ’20), September 15–18, 2020, Bugibba, Malta.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3402942.3402982

1 INTRODUCTION
When designing game stages and tuning game parameters, game
designers must consider the player archetypes of the expected au-
dience of the game. In particular, understanding the common play-
styles and skill levels required to complete the game is crucial for
designing an enjoyable game for a wide base of player archetypes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG ’20, September 15–18, 2020, Bugibba, Malta
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8807-8/20/09. . . $15.00
https://doi.org/10.1145/3402942.3402982

b)

c)a)

d)

Figure 1: Screenshot of the proposed interface that identi-
fies (a) the game view, (b) the stage design panel, (c) the bot
setting panel, and (d) the visualization panel.

Many games include multiple levels of difficulty. For example,
for expert players, a “hard” mode might involve a wider variety of
hazards and stronger enemies. In contrast, for novice players, an
“easy” mode should implement simpler challenges. Tuning the game
features that influence the perceived level of difficulty is a time-
consuming iterative task. In this paper, we address this problem by
proposing a game level authoring tool, called Mario Builder (see
Figure 1). This tool incorporates synthetic testers that help the
game designer better understand which section of the game level
contributes the most to the difficulty of Super Mario Brothers.

The use of bots as synthetic testers has been proposed in the
past [Gaina et al. 2017; Gudmundsson et al. 2018; Holmgård et al.
2018; Isaksen et al. 2017; Khalifa et al. 2016; Nelson 2011]. They
provide the advantages of reducing the bias from a human player’s
psychomotor skill improvement and facilitating the exploration of
the impact of a narrower range of game parameters (e.g., character
speed, width, and height). Nevertheless, synthetic testers can not
be a substitute for the actual players’ playtest, but the current
synthetic testers could be used earlier in the development cycle.
One key element that is needed to create synthetic testers that can
be of more use in later stages of the development – closer to human
playtests – is the simulation of multiple play-styles and skill levels.

We incorporate play-styles and skill-levels into standard syn-
thetic testers based on the Monte Carlo tree search (MCTS) algo-
rithm [Holmgård et al. 2018; Jacobsen et al. 2014; Khalifa et al. 2016].

https://doi.org/10.1145/3402942.3402982
https://doi.org/10.1145/3402942.3402982

FDG ’20, September 15–18, 2020, Bugibba, Malta Suetake, et al.

We found the best parameters to achieve the desired play-styles au-
tomatically using genetic algorithms (GA). We also adjust the depth
of the search in the MCTS and added randomness to reproduce
human-like operational and decision errors.

Furthermore, to enhance the user’s understanding of what makes
a game level difficult, Mario Builder includes visualization tech-
niques that provide insight into which elements of the game con-
tribute the most to the difficulty. In particular, we use histograms of
the gameplay scores, similar to Isaksen et al. [2017], and heat maps
to show the locations where the game character dies [Thompson
2019].

Finally, we evaluated the effectiveness of Mario Builder with a
user study. Our results were positive, as most of the users preferred
to use our synthetic testers. The user feedback was an important
part of the process. It led to our conclusions for improving the
interaction and visualization approaches for game designers, which
may broaden the use of synthetic testers in the game design process.

2 RELATEDWORK
2.1 AI-Assisted Game Design
Artificial intelligence (AI) techniques can support parts of the game
design process [Gaina et al. 2017]. Isaksen et al. [2017] introduced
a method to explore the high-dimensional game space (i.e., the
relationship between game parameters and player experience) in
minimal score-based action games like Flappy Bird, by using an
overall playing score. First, they made a simpler player model with
human motor skills that had several parameters, such as reaction
speed and actions-per-second. Second, they predicted game diffi-
culty using an exponential survival analysis of score histograms.
While these systems are suitable for a simple game space, they
require a fixed strategy (i.e., perfect motor skills not to lose) in
advance. There exist various game play-styles for extracting some
knowledge from games using playtest results [Nelson 2011]. So, it
is essential to customize the bot properties in real-time for complex
games, such as Super Mario Brothers.

Therefore, we adopted automatic playtesting but created a new
function to customize the play-styles and skill levels.

2.2 Human-like AI Behavior in Games
Imitating human playing behavior has been thoroughly investi-
gated. For example, Gudmundsson et al. [2018] propose a deep
learning method to learn the actual player’s play-styles from game-
playing data. A problem with the deep-learning approach is that it
requires large-scale training datasets because of the large number of
parameters that need to be tuned. Then, researchers have compared
several methods for generating character controllers that mimic
the human-like playing, and they report that the MCTS algorithm
is suitable for human-like behavior [Holmgård et al. 2018; Jacob-
sen et al. 2014; Khalifa et al. 2016]. Hence, we utilized the MCTS
algorithm to customize bot properties.

2.3 Data Visualization in Games
Several techniques have been proposed for teaching users about the
results of playtests. One approach is to utilize gameplay scores from
multi-agents’ playtests [Isaksen et al. 2017]. However, a player’s
score focuses only on predicting a game’s difficulty, and it doesn’t

(a) (b) (d) (e)

(g)(f) (h)

(c)

Figure 2: Stage elements; (a) bots start point, (b) goal point
(flag pole), (c) coin, (d) power-up items (mushroom and fire
flower), (e) enemy, (f) ground, (g) blocks, and (h) pipe.

provide information to understand where to refine the game stages.
The other approach is to use a heatmap, which is a color-coded
representation based on event frequencies, such as locations where
game characters often die [Thompson 2019]. These systems enable
users to understand the results of the bot playtests visually. How-
ever, this representation is insufficient to support designing game
stages because the designers must consider both the overall game
difficulty and event frequencies. Therefore, we employed both play-
ing scores and a heatmap for visualizing the quality of the games
in development.

3 MARIO BUILDER
The user interaction proceeds as follows. First, a game stage with-
out any elements appears in the game view, see Figure 1(a). Then,
the user starts by manually placing the stage elements, see Fig-
ure 1(b). Note that the users can play a stage in development by
themselves. Our system allows the users to set the AI-bot proper-
ties (i.e., play-style and skill level) with the setting bot function, as
shown in Figure 1(c). Next, click the Playtest button simulates an
AI-based playtest, and the users can see the simulation results as an
animation of Mario behavior in the game view and difficulties on
the visualization panel, see Figure 1(d). Based on the visualization,
users can efficiently design the game stages.

3.1 Stage Design Function
The user first sets a start point and an end goal (i.e., the flag pole
at the end of each stage) on the screen, as shown in Figures 2(a)
and 2(b). Next, the user adds ground and block elements (e.g., coins,
blocks, pipes, and enemies) on the 2D stage design panel via trial and
error, as shown Figures 2(c)-(h). When the user puts a new element
over an existing element, the system removes the old element and
inserts the new one. Note that our system assumes that Mario
moves from the left side of the screen to the right side.

3.2 Bot Setting Function
By clicking checkboxes, see Figure 1(c), the user can freely change
the play-styles and skill levels (from beginner to expert). In this
paper, the play-styles are categorized into four simple types: (a)
“Runner” to clear the games quickly, (b) “Coin Collector” to gather
coin preferentially, (c) “Monster Killer” to defeat many enemies,
and (d) “Scorer” to earn a total score preferentially (i.e., gathering
coin and power-up items).

Interactive Design Exploration of Game Stages Using Adjustable Synthetic Testers FDG ’20, September 15–18, 2020, Bugibba, Malta

pipe object

enemy

Figure 3: Stage Design Function. The game stage is covered
by a grid, and the user places stage elements on the grid.

Table 1: Game metrics according to the bot play-style.

Play-style Game Metric

Runner (a) the total distance
(d) the total score

Coin Collector (a) the total distance
(b) the number of collected coins

Monster Killer (a) the total distance
(c) the number of defeated enemies

Scorer (a) the total distance
(d) the total score

3.3 Playtest Function
When the users click on the Playtest button, our system simulta-
neously runs M synthetic testers with the user-set properties on
the designing stage (in this paper, we set M = 30 by referring to
the number of actual testers in the game development site). Note
that each one of the testers acts individually and follows a different
movement route. This playtest will continue until the characters of
all the testers reach the end goal (e.g., the flag pole) or die. In our
experience, it took about 10 seconds to complete the playtest.

3.4 Visualization Function
After the AI-based playtest, our system automatically presents
(i) the travel trajectories and (ii) the locations where the synthetic
testers die with “×” marks on the stage design panel.

Our system also produces a visual of the result statistics as a one-
dimensional histogram, similar to Isaksen at al. [Isaksen et al. 2017].
However, there exist various play-styles in Super Mario Brothers, so
it is necessary to change the displayed result statistics according
to the bot play-styles. We empirically chose four metrics: (a) the
total distance traveled on the stages, (b) the number of collected
coins, (c) the number of defeated enemies, and (d) the total score,
and visualize two of them according to the plan shown in Table 1.

4 SYNTHETIC TESTER MODEL
We use the MCTS algorithm, which is a heuristic search algorithm
based on a randomized exploration of the search space instead of a
static evaluation function, to make a synthetic tester model. This
algorithm builds up a game tree in memory, and this accurately
estimates the values of the most promising moves. In order to strike
a balance between exploitation (better opportunities to win) and
exploration (moves that lack simulation data), we adopted the upper
confidence tree (UCT) as our tree policy.

Table 2: Stage characteristics from the current game state.
Characteristic Description
1 canJump whether Mario can jump or not
2 canShoot whether Mario can shoot a fireball or not
3 nearCoinBox whether coin boxes are near Mario or not
4 nearEnemy whether enemies are near Mario or not
5 nearItemBox whether item boxes are near Mario or not
6 nearStep whether steps (i.e., differences in stage

heights) are near Mario or not
7 allFalse whether all the other values (i.e., 1 through

6) are false or not

4.1 Game State Vector
Actual players often change their playing rules in the current game
state, so we designed the default policy and the reward function to
reflect this in the current game state. First, we empirically chose
seven characteristics which are expressed by binary values (1 =
true , 0 = f alse) from the current game states, and rewrote them in
a vector form, treating the values as columns, called state vector
®S ∈ R7 (see Table 2).

4.2 Default Policy
When playing Super Mario Brothers, the actual players use five
buttons: right (R), left (L), dash (D), jump (J), and fireball (F), for
controlling Mario’s behaviors (11 actions). In the simulation from
the MCTS algorithm, if these behaviors are selected at random per
f frame (in this paper, we set f = 4), it may not be suitable for
human-like playing. That is, it is necessary to add a default policy
which prefers certain behaviors in the simulation process.

We first defined an action weight vector ®awi ∈ R7, which is
related to the above stage state from each button i ∈ {R,L,D, J , F },
and computed a ratiobi where the bots select each button as follows:

bi = ®awi · ®S (1)

Furthermore, we consider the condition of multi-button selection.
We calculated the ratio of each action Pj that can be expressed by
the product of each pressed button’s weight bi as follows:

Pj =
∏
i
bi (2)

Based on the ratio of each action, the simulation can be performed
in the MCTS algorithm. Note that we initially set Pj = 1.0.

4.3 Reward Function
We built a reward function based on the following six elements:
(1) the coin score dcoin (i.e., the number of earned coins), (2) the
kill score dkill (i.e., the number of defeated enemies), (3) the power-
up item score dpower (i.e., the number of earned power-up items),
(4) the distance along the x-axis dx , (5) the distance along they-axis
dy , and (6) the total distance traveled on the stages ddist based
on the Manhattan distance. These were used to create the vector
®d = (dcoin ,dkill ,dpower ,dx , dy ,ddist).
Next, to reflect the game state in the reward, we defined a reward

weight vector ®rw ∈ R7 that was related to the above game stage
state from each element i and computed a ratio ri that adds each

FDG ’20, September 15–18, 2020, Bugibba, Malta Suetake, et al.

Table 3: Fitness functions F according to each play-style.

Play-style Fitness Function F

Runner 1.0 * the total distance
Coin Collector 0.1 * the total distance + the coin score
Monster Killer 0.1 * the total distance + the kill score
Scorer 0.1 * the total distance + the total score

Table 4: Synthetic tester skill level statistics.
Skill Level N d r

Expert 300 12 0.01
Normal 250 9 0.05
Beginner 200 6 0.10

reward element to the total reward as follows:

ri = ®rwi · ®S (3)

We rewrote them in vector form treating the values as columns,
creating the vector ®r = (rcoin , rkill , rpower , rx , ry , rdist). Finally,
we computed a reward value R where

R = ®r · ®d (4)

After the simulation, the information in each node is updated by
adding the reward value R to the total reward and increasing the
number of visits from the simulated node to the root node.

4.4 Play-style Parameters
For controlling the bot’s play-styles, we must set all values of the
action weight vectors ®aw and the reward weight vectors ®rw appro-
priately. Then, we define fitting functions F for each play-style (see
Table 3) and maximize them by using the GA.

4.5 Skill Level Parameters
We produced skill levels based on three parameters (1) the total
selection number of the MCTS N , (2) the depth of the simulation
of the MCTS d , and (3) the randomness to reproduce human-like
operational and decision errors r , as shown in Table 4.

5 USER STUDY
We performed a user study to compare a fully-manual design (with-
out an AI-based playtest) with our method to investigate the ef-
fectiveness of our interface in assisting users in understanding the
characteristics of user-designed game stages qualitatively. We in-
vited 12 participants, aged 23 to 35, who had an amateur level of
knowledge of game designing/playing.

We asked them to keep working on their stages until they were
satisfied with them in the following order: first without, then with
the AI-based playtest. In the end, each participant was asked to
answer two questions: (Q1) Which did you find more comfortable
to use for design? (w/o or w/ the AI-based playtest) and (Q2) Score
the overall usability of each method using a five-point Likert scale
(1 = “extremely dissatisfied,” and 5 = “extremely satisfied”).

Table 5 shows the post-experiment questionnaire results with
the mean values and standard deviations (SD). We calculated p-
values by running a Wilcoxon signed-rank test. The result was
p = 3.38e − 03, which is significant at p < 0.01 for a two-tailed
hypothesis. The participants’ comments are summarized below:

Table 5: Comparison results (Manual vs AI Method).

Manual AI Method
Q1 Vote [%] 16.67 (=2/12) 83.33 (=10/12)

Q2 Mean 3.08 4.00
SD 0.79 0.74

• I thought that the proposed system allowed us to understand
whether the current stage was reachable or not. In addition. it will
also be useful for finding game bugs such as boundary conditions.

• Bots can be helpful to repeatedly design partial stages because
the users do not worry about their skill.

In summary, by visualizing the AI-based playtests results, the par-
ticipants were able to understand where to improve in the current
stagewhile balancing the game difficulty and the player’s properties.
The user study results suggest that our system could significantly
reduce the time and effort of game stage design required in practice.

6 LIMITATIONS AND FUTUREWORK
The present paper focuses mainly on the visualization of playtests
with bot play-styles and skill levels. However, it may be interesting
to explore the possibility of extending it to include auto-tuning
tools for optimizing stage components (e.g., moving or removing
blocks) and game parameters (e.g., enemy speed) in the future.

7 CONCLUSION
We have proposed a user interface with an AI-based playtest for
interactively designing games stages of Super Mario Brothers. Our
system enables the users to control the detail of the bot properties
(play-style and skill level) and visualize the AI-based playing results
of the game in development. This system is particularly useful for
finding “good” game stages. We believe that our system is a step
toward accelerating game difficulty balancing for production use.

ACKNOWLEDGMENTS
This work was supported by JST CREST under grant JPMJCR17A1.

REFERENCES
Raluca D. Gaina, Rokas Volkovas, Carlos Gonzalez Diaz, and Rory Davidson. 2017.

Automatic game tuning for strategic diversity. In Proc. 9th Computer Science and
Electronic Engineering Conference (CEEC). IEEE, Colchester, UK, 195–200.

Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet, Sami Purmonen,
Bartlomiej Kozakowski, Richard Meurling, and Lele Cao. 2018. Human-like playtest-
ing with deep learning. In Proc. IEEE Conference on Computatonal Intelligence and
Games (CIG). IEEE, Maastricht, Netherlands, 1–8.

Christoffer Holmgård, Michael Cerny Green, Antonios Liapis, and Julian Togelius.
2018. Automated playtestingWith procedural personas throughMCTSwith evolved
heuristics. IEEE Trans. on Games 11, 4 (2018), 352–362.

Aaron Isaksen, Dan Gopstein, Julian Togelius, and Andy Nealen. 2017. Exploring game
space of minimal action games via parameter tuning and survival analysis. IEEE
Trans. on Games 10, 2 (2017), 182–194.

Emil Juul Jacobsen, Rasmus Greve, and Julian Togelius. 2014. Monte mario: Platforming
with MCTS. In Proc. the 2014 Genetic and Evolutionary Computation Conference
(GECCO’14). ACM, New York, NY, USA, 293–300.

Ahmed Khalifa, Aaron Isaksen, Julian Togelius, and Andy Nealen. 2016. Modifying
MCTS for human-like general video game playing. In Proc. the 25th International
Joint Conference on Artificial Intelligence (IJCAI’14). AAAI Press, 2514–2520.

Mark J. Nelson. 2011. Game metrics without players: Strategies for understanding
game artifacts. In Proc. the 19th AIIDE Conference on Artificial Intelligence in the
Game Design Process (AIIDE’11). AAAI Press, 14–18.

Clive Thompson. Online; accessed 9-december-2019. Halo 3: How Microsoft Labs
invented a new science of play. https://www.wired.com/2007/08/ff-halo-2/.

https://www.wired.com/2007/08/ff-halo-2/

	Abstract
	1 Introduction
	2 Related Work
	2.1 AI-Assisted Game Design
	2.2 Human-like AI Behavior in Games
	2.3 Data Visualization in Games

	3 Mario Builder
	3.1 Stage Design Function
	3.2 Bot Setting Function
	3.3 Playtest Function
	3.4 Visualization Function

	4 Synthetic Tester Model
	4.1 Game State Vector
	4.2 Default Policy
	4.3 Reward Function
	4.4 Play-style Parameters
	4.5 Skill Level Parameters

	5 User Study
	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

