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Exploring Game Space of Minimal Action Games via
Parameter Tuning and Survival Analysis

Aaron Isaksen , Dan Gopstein, Julian Togelius, and Andy Nealen

Abstract—Game designers can use computer-aided game design
methods to model how players may experience the perceived dif-
ficulty of a game. We present methods to generate and analyze
the difficulty of a wide variety of minimal action game variants
throughout game space, where each point in this abstract design
space represents a unique game variant. Focusing on a parame-
terized version of Flappy Bird, we predict hazard rates and diffi-
culty curves using automatic playtesting, Monte Carlo simulation,
a player model based on human motor skills (precision and ac-
tions per second), and survival analysis of score histograms. We
demonstrate our techniques using simulated game play and actual
game data from over 106 million play sessions of a popular online
Flappy Bird variant, showing quantitative reasons why balancing
a game for a wide range of player skill can be difficult. Some appli-
cations of our techniques include searching for a specific difficulty,
game space visualization, computational creativity to find unique
variants, and tuning game balance to adjust the difficulty curve
even when game parameters are time varying, score dependent, or
changing based on game progress.

Index Terms—Automated playtesting, computer-aided game de-
sign, Flappy Bird, player modeling, survival analysis.

I. INTRODUCTION

GAME designers define and set game parameters to tune a
game to achieve a desirable player experience, typically

relying on iterative design, intuition, experience, and user feed-
back. As shown in Fig. 1, the designer must estimate player
skill, set game parameters, play test, evaluate player experience
using game play metrics, revise parameters, and iterate until the
game reaches an appropriate level of difficulty. We present in
this work our novel methodology for tuning game parameters
based on the iterative process, but which does not require human
input in the feedback loop.

Each unique parameter setting creates a new game variant.
We refer to this high-dimensional space of game variants as
game space [1].1 A point in the game space defines the game
parameters for the game variant; these game parameters directly
affect the player, enemies, or the level generation [2]. For exam-
ple, Fig. 2 shows a 2-D game space for a Space Invaders [3] type
game, with four points representing four unique game variants,
each with a different difficulty. Exploring the game space to
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Fig. 1. Iterative game design feedback loop. Each cycle through the loop
creates a new game variant.

Fig. 2. Two-dimensional game space of Space Invaders-like variants with
different player and enemy width. Intuitively, we expect some of these variants
to be more difficult than others.

find specific settings for an optimal experience is a considerable
challenge, and we demonstrate the use of quantitative methods
to better understand the relationship between game parameters
and a player’s perception of difficulty [4].

We can expand our general understanding of games by study-
ing a simple example game in detail: in particular, it is useful
to compare different game variants, compare players of differ-
ent skill levels, and compare how difficulty changes as players
learn from repeated plays [5]. Here, we focus on how game pa-
rameters, without changing the game rules, can affect a game’s
perceived difficulty. This allows us to better understand how
players experience minimal action games [6] and leverage this
knowledge to determine how parameters of a particular game
affect its difficulty. For example, we expect the variants of Space
Invaders in Fig. 2 with wider players to be more difficult than
those with narrower players (since the player is more likely to
be hit by the alien bombs), even if the variants are otherwise
identical. The methods in this paper allow us to precisely mea-
sure these types of parameter changes algorithmically, without
human playtesting or feedback. Inspired by cocreativity and a
mixed-initiative design, where human designers work together
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Fig. 3. Difficulty curve allows designers to qualitatively model how difficulty
changes in a game. We present quantitative methods to represent this curve.

with computers to cocreate a game [7], our goal is to use quanti-
tative methods to generate content and information for humans
to evaluate.

For our research, we performed the first research-oriented
quantitative design analysis of Flappy Bird [8], a commer-
cially and critically successful mobile game with relatively few
adjustable game parameters that impact core game play (see
Section III for a description of the rules). Flappy Bird is a
remarkably simple game, yet its parameter space is also surpris-
ingly rich. While more complicated games will require more
detailed analysis, the methods we use to generate, simulate, and
analyze an action game still apply to more complex games [9].
The set of all game variants for a specific game can be very large
and therefore impossible to search exhaustively—imagine ad-
justing hundreds of independent control knobs to search for the
perfect game. We, therefore, limit our game space exploration
by focusing on game variations caused by parameter changes,
not rule changes.

Furthermore, we show how score probability distributions are
a useful tool for understanding, modeling, and comparing player
experiences of game difficulty. Because scores are quantitative
by nature, they are particularly useful data for exploring game
space and the quantitative analysis of games. To explain how
the score probability distributions predictably respond to game
parameter changes, we present the first application of survival
analysis to the game design. Survival analysis is a branch of
statistical modeling that helps predict how long in the future
an event may occur [10], [11] and is typically used to study
the lifetime of mechanical parts and the effectiveness of med-
ical treatments. We use survival analysis in games to predict
the likelihood of a player achieving a specific final score. In
many action games, the longer a player survives, the higher their
score, so we use score as a replacement for lifetime. Although
we focus on probabilities of achieving specific scores, one can
use our approach to model any nondecreasing factor, such as
time played, distance traveled, etc.

Survival analysis provides a well-defined hazard rate as the
rate at which a player will fail given that they have already
reached a score x in the game. This provides a quantitative
metric analogous to the qualitative difficulty curve, which gives
designers a way to think about how difficulty changes through-
out a game or level [4]. In Fig. 3, a hypothetical difficulty curve
is shown, with the x-axis representing progress and the y-axis
representing difficulty. Designers may choose to make parts of
the game easier or harder to adjust drama, tension, and chal-
lenge [12], [13]. This paper presents our methods for building

these difficulty curves using quantitative methods based on ar-
tificial intelligence (AI)-enabled player agents.

A. Organization

This paper is organized as follows. Section I describes the
overall research project, while Section II discusses how our re-
search relates to previous work in game parameter exploration.
In Section III, we define the game space for Flappy Bird, includ-
ing new game design parameters for controlling time-varying
difficulty. In Section IV, we describe our player model, which
simulates error-prone players, modeling inaccuracy in timing
precision, and limited actions per second. In Section V, we give
a short mathematical overview of survival analysis and define
the hazard rate, our mathematical model for difficulty curves.
In Section VI, we present our method for estimating hazard
rates, using simulation and survival analysis to determine the
difficulty curve.

In Section VII, we simulate different games and players,
showing how varying different parameters of the game or player
model leads to different score probability distributions and haz-
ard rates and, therefore, perceived difficulty. We also use our
theory to analyze over 106 million plays of flappybird.io [14],
showing the likely presence of learning effects in the score
data [15]. We then adjust the hazard rates by changing game
parameters to maintain an effectively constant difficulty while
players improve.

In Section VIII, we show how our techniques can be used
to visualize the design effects of each game parameter. We also
use computational creativity and optimization techniques to find
games of specific difficulties as well as finding k unique game
variants that explore the possibilities in the Flappy Bird game
space (this process is related to novelty search [16]). Finally,
in Section IX, we discuss our existing experiments and present
areas for future research.

II. RELATED WORK

In this section, we discuss how our research relates to the
existing work in the field of AI-assisted quantitative game de-
sign. It is quite common in design to focus on a particular area
of the problem (for example, focusing one design iteration on
the abilities of enemies and a separate design iteration on the
layout of the levels) [12]. This same approach can be used to
focus on one set of parameters at a time, lowering the dimension-
ality of the problem. For games with significantly more param-
eters, one can use dimensionality reduction techniques to find
a lower dimensional space of parameters, addressing correlated
parameters [17], [18]. While our techniques presented in this
paper can scale, the method here requires the game to be an ac-
tion game focused on dexterity challenge where score is related
to lifetime. For example, in infinite runners like Canabalt [19],
one could use this technique to tune collision hit box sizes, gap
sizes, and running speeds. Nonetheless, this is a large and popu-
lar class of games, especially for web and mobile action games.

Accurately simulating game play requires an understanding
of how players react to game events: this is the process of player
modeling [20]. Our player model assumes that much of the dif-
ficulty in minimal action games is due to human motor skill,
specifically precision and reaction time [21]. This approach is
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related to biological constraint modeling, where we apply sim-
ple models to represent the limitations of human ability [22].
Since we use a static, objective, simulation-based player ex-
perience model [23], we do not need to analyze prerecorded
human play sessions of the specific game to train our player
model and do not rely on active live players to estimate the
current level of challenge or fun [24]–[29]. We also focus on
single-player games, not the related challenge of quantitatively
balancing multiplayer games [30], [31].

Our goal is to make the simulator exhibit human-like play
performance (novice, average, or skilled), not play with super-
human ability [32]–[34]. As long as our system properly predicts
human perception of difficulty, it fits our purposes. In minimal,
well-balanced, and compelling action games like Flappy Bird or
Canabalt, the player takes a relatively obvious path, but execut-
ing that simple path is challenging [6]. In this paper, we examine
a game with simple path planning and without enemies, so we
can focus on the player’s ability to control the game—without
analytical evaluation of possible player movement [35], mul-
tifactor analysis of player or enemy strategies [36], estimating
player abilities [37], dynamic scripting of opponents [38], build-
ing machine learning estimators [29], [39], [40], or evaluating
design via heuristics [41].

Our work relies on internal game metrics [42], [43]. However,
game metrics typically require the game to be publicly available,
have a significant number of players, and time to gather enough
data, and therefore, they have limited utility for rapid iteration in
the early design process. Additionally, when designers become
expert at their own game, they can lose perspective on how their
game is experienced by new players. It can also be difficult for
designers to break out of local optima and creatively explore
new regions of game space. Automated playtesting [24], [37],
[44], visualization [45], [46], and geometric path modeling [47]
can help with this process, guiding designers to create games
best suited to individual skill levels and play styles [36].

Probability distributions have been used for modeling session
times [48] and total play time [49]. Score probability distribu-
tions tell us the likelihood that a player will achieve a specific
score, and we can create these distributions by repeatedly play-
ing a game and collecting the resulting score frequencies in a
histogram. Automatically creating new rules [30], [50]–[53] is
a related problem as rule changes also affect the distribution of
scores achieved in game, but parameters alone have a signifi-
cant impact on game feel [54]: getting Mario’s jump to feel right
is more about adjusting the parameters of a game physics en-
gine, not coding the engine itself (or trying to emulate realistic
physics).

This journal paper builds on a previously published confer-
ence paper [1] and two workshop papers [5], [55]. In addition
to synthesizing the results of these papers and placing them
in relation to each other, we provide a more in-depth survival
analysis of Flappy Bird hazard rates, using techniques we later
developed to handle nonconstant difficulty games and time-
varying player skill. This provides a more concrete framework
to discuss quantitative difficulty curve analysis than in our previ-
ous work. We also present new results on tuning parameters for
games with time-varying and score-dependent parameters un-
der conditions of varying player skill, specifically showing the
effects on perceived difficulty when exploring dynamic Flappy
Bird variants.

Fig. 4. In Flappy Bird, the player must navigate the bird through a series of
pipes without crashing. We modify the labeled parameters to generate unique
game variants.

III. FLAPPY BIRD GAME SPACE

Action games are defined by rules and parameters, designed
to produce a specific player experience through challenges. Pre-
dicting the qualitative experience is hard, but we can examine
the distribution of final scores to predict a quantitative difficulty
of the game. Throughout this paper, we refer to this measured
difficulty as h(x), the hazard rate, which defines the rate at
which a player is expected to fail given that they have already
reached a score of x.

In Flappy Bird, a player must fly a constantly moving bird
without crashing into a series of pipes placed along the top and
bottom of the screen (see Fig. 4). Each time the player taps the
screen, the bird flaps its wings, moving upward while gravity
constantly pulls downward (resulting in a series of parabolic
hops). Each time the bird passes through a pipe gap without
crashing, the player scores a point. Part of the appeal for Flappy
Bird is the comically high difficulty level, especially when typ-
ical casual games are easy and forgiving. Flappy Bird could
have been much easier with a few small adjustments, such as
increasing the gap between pipes or decreasing the width of
the pipes, but these would have led to different and potentially
less rewarding play experiences. In this work, we also examine
variants of Flappy Bird, which change the pipe gap (the dis-
tance between the upper and lower pipes) and the horizontal
bird speed as the game progresses. This allows us to examine
variants where the game becomes more difficult as the player
keeps playing.

We have chosen to use the following parameters for our im-
plementation of Flappy Bird (see Fig. 4). The original Flappy
Bird has a constant value for each parameter during a play ses-
sion since the game does not change as the player progresses.
More generally, game parameters can change as the player gets
further into a level so here we also explore variants that get more
difficult as the player progresses. Pipe separation ps : More dis-
tance between pipes is easier to play, giving more time to react
to changing gap locations. Pipe gap pg : The distance between
the upper pipe and the lower pipe. Narrower gaps are more dif-
ficult as the bird has less room to maneuver, requiring better
motor skills. Pipe width pw : Wider pipes increase difficulty as
the bird spends more time in the narrow pipe gap. Pipe gap
location range lr : Pipe gap locations are uniformly distributed.
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Larger ranges are harder because there is more distance to travel
between a high gap and a low gap. Gravitational constant g: Ac-
celeration of the bird in the y-direction. Higher gravity causes
the bird to drop faster. Jump velocity j: When the bird jumps,
its vertical velocity is set to j. Higher velocity makes higher
jumps. Bird speed v: Speed at which the bird travels to the right
(alternately, the speed at which pipes travel to the left). World
height H: Distance between ceiling and floor. Bird width and
height bw , bh : Size of the bird’s hit box. Larger birds are harder
to jump through gaps. Change in pipe gap Δpg : Rate of change
for pipe gap pg after each pipe. The original game does not have
this parameter, but we use it here for score-dependent difficulty.
Change in bird speed Δv: Change in bird speed after clearing
each pipe; also not present in the original game.

By varying these parameters within sensible ranges, we can
generate many variants of Flappy Bird. Many of these parame-
ters have constraints; for example, the pipe gap must be positive
(or the pipes would overlap), the bird height cannot be larger
than the pipe gap or the bird cannot fit through the gap, and
gravity and jump velocity must have opposite signs.

IV. PLAYER MODEL

We begin with a model of a player with perfect motor skills:
a perfect player with instantaneous reaction who would never
lose at the original Flappy Bird. Given a version of Flappy
Bird defined by its game parameters (a single point in game
space as defined in Section III), we create an AI that finds a
path through the pipes without crashing. Instead of using an A*
planner that finds the shortest path, we chose to use a simpler
AI, which performs well but is easier to implement and faster
to execute. Each time the bird drops below the target path, the
AI immediately performs a flap action (which sets vertical bird
speed vy to jump velocity j). Whatever AI is used, it should
play with very good performance on solvable levels and should
only fail on impossible levels (such as a level with a tiny pipe
gap where the bird cannot fit through).

We then extend the AI to perform less well by modeling the
main components of human motor skill, which impact difficulty
in these types of action games: precision, reaction time, and ac-
tions per second. Adjusting these values lets us model different
player types, since novices react slower and are less precise than
experts.

A. Player Precision

When a player plans to press a button at an exact time, they
execute the action with some imprecision. We model this error
as a normal distribution with standard deviation σ proportional
to a player’s imprecision (see Fig. 5). Imprecision is also related
to the time a subject has to react to an event, called the speed–
accuracy tradeoff: the less time they have to react, the less
accurately they will respond [56]. For simplification, our player
model assumes that precision is an independent variable and
not dependent on bird speed. In a user study [1], we measured
standard deviation of precision ranging between σ = 35.9 ms
(when players have plenty of time to react) and σ = 61.1 ms
(when players are required to act very quickly) and use this
range for game space exploration.

Fig. 5. Modeling skill by adjusting probability of executing moves on time.

Fig. 6. Modeling precision by randomly adjusting the time the simulated
player jumps. Moving the jump earlier or later can cause the bird to crash into
the lower pipe or upper pipe.

We model imperfect precision in our AI by calculating an
ideal time t to flap and, then, adding a small perturbation ε,
drawn from a normal distribution with 0 mean and standard
deviation σ, as shown in Fig. 6. By increasing the standard
deviation, the AI plays less well and makes more errors, leading
to a higher difficulty estimate. Reducing σ to 0 ms tests if a level
is solvable by the AI without any imprecision error.

B. Actions Per Second and Reaction Time

Humans can only perform a limited number of accurate but-
ton presses per second. In our user study [1], we measured a
maximum rate of 7.7 actions per second on average. We also
limit our AI to this same number of actions per second. We
simplify our model by keeping this constant, although a more
complex model would account for fatigue, since players cannot
keep actions per second constant for long periods.

When a player sees a new stimulus, it takes time to react.
The speed of the player’s reaction is influenced by factors in-
herent to the system [57], as well as factors affecting the player
themselves [58]. We measured this delay as τ = 288 ms, but as
found in our experiments, this type of delay has a minor impact
on estimating difficulty for Flappy Bird [1].

V. SURVIVAL ANALYSIS

To quantitatively understand how simulations of games of
varying difficulty and players of varying skill give rise to unique
score probability distributions, we need a mathematical foun-
dation to model player performance. The simulation data we
create are in the form of discrete scores, but the underlying
distributions are easier to describe in the continuous domain.

We begin by looking at the probability distribution function
f(x) for a game, which tells us the probability that the player
will achieve a score of x on the next play. In practice, we can
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create a discrete probability distribution by recording all of the
scores on each play of the game in a histogram.

The survival function S(x) tells us the probability that a player
will achieve a score ≥ x. It is closely related to the cumulative
distribution function F (x), which tells us the probability that a
score is < x, defined as

∫ x

0 f(s)ds (where s is a free variable
that we integrate from a score of 0 to a score of x). The survival
function is defined as S(x) =

∫ ∞
x f(s)ds = 1 − F (x) = 1 −∫ x

0 f(s)ds. We have S(x) = 1 when x ≤ 0 because every player
will at least achieve a score of 0, and S(∞) = 0 because all
players will eventually reach a termination state and receive a
final score.2

The hazard function h(x) is useful for comparing probability
distributions and models the difficulty curve of a game. Also
called the hazard rate, it is defined as h(x) = f(x)/S(x). The
hazard rate tells us the rate at which we should expect to fail,
given we have already reached a specific score x. Low hazards
imply that the game is easy; high hazards imply harder games.

Note that h(x) is not a probability distribution and is directly
related to how one can think about adjusting difficulty curves.
We are not as concerned about the entire probability distribution
as much as how difficult a game is at a specific section, assuming
the player has already reached that point in the game. Therefore,
game designers are effectively working on modifying the hazard
function h(x) so the difficulty curve feels good to players [54].
Deciding what is “good” is beyond the scope of this work—
some designers might want a game that increases in difficulty
with an easier on-ramp; others might want a hardcore game that
is difficult from the start. We give many examples of hazard
functions in Section VII.

Impossible games, where h(x) is undefined, are games that
cannot be played successfully by any player (e.g., the bird cannot
fit through the pipe gap). Trivial games, where h(x) = 0 every-
where, occur when all players will survive assuming a minimal
amount of effort (e.g., if the pipe gap is as large as the screen—
the player still needs to pay attention, but the game is trivial as
long as they are actively participating). Playable games, where
h(x) is finite, are games that can be played successfully by some
players, but not necessarily all of them.

To evaluate the hazard function empirically, we play the game
N times and save each score in a histogram. We define n(x) as
the number of scores in the histogram equal to x. We can now
calculate these empirical values from our data as

f(x) =
n(x)
N

, S(x) =
∑

s≥x

f(s), h(x) =
f(x)
S(x)

. (1)

Because S(x) becomes very small as higher scores become
less likely, h(x) is susceptible to noise in practice. For this
paper, we simply ignore h(x) for values of x where S(x) < ε,
where ε ranges between 0.03 and 0.01 depending on how many
samples were generated. This avoids the noisiest parts of the
hazard function, where S(x) is vanishingly small.

2Even if the game is trivially easy such that S(x) = 1 for most scores of x, a
human player will eventually need to sleep or otherwise stop playing, implying
that S(x) will eventually approach 0. For even longer time frames, the system
running the game and AI agent will eventually no longer function.

Fig. 7. We explore game space by simulating game variants and estimating
their difficulty using survival analysis.

VI. METHOD FOR ESTIMATING HAZARD RATES

Given our game space and player model, we now present our
methodology for estimating the hazard rates and thereby the
effective difficulty. We explore points in the game space by per-
forming randomized simulations and examining the distribution
of scores. Our goal is to describe the perceived difficulty of a
game by the hazard rate function h(x).

The process to calculate h(x) is composed of three steps.
1) Generate a new game variant based on the given parame-

ters.
2) Simulate the game with an AI with human-like behavior.
3) Analyze the resulting score histogram using survival anal-

ysis to estimate the difficulty of the simulated game.
Generate and Simulate steps are repeated until we have a

stable score distribution for measuring in the Analyze step.
Our general approach is shown in Fig. 7. To explore a new

game variant, we select parameter values from a valid range.
The valid range is determined by the game rules (for example,
the Space Invaders player width cannot be ≤0 and cannot
be larger than the screen size), and we begin our search from
the parameter settings that a human designer has seeded. Using
these values, we generate a level and simulate playing it using
an AI that models human imprecision. We repeat the Generate
and Simulate steps until we have a reliable histogram of scores
for the game variant. We then analyze the histogram using
survival analysis to find the hazard rates (i.e., difficulty curves)
of the distribution. We use the hazard rate to determine how we
might update the game parameters, depending on the particular
design task at hand.

A. Generate

Each simulation begins by using game parameters to generate
a new game variant. This involves placing the bird and pipes in
their starting positions and randomly uniformly distributing the
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Fig. 8. Two levels created by the Generate step given different parameter sets.
More simulations complete the second version, so it has an easier estimated
difficulty. The red lines indicate the target location for the AI to flap.

pipe gaps in the pipe gap location range lr . In Fig. 8, we show
two different generated game variants.

Because the levels are generated using a random process,
it is important to generate a new level each time the AI runs,
even though the parameters do not change. Otherwise, unwanted
artifacts can arise in the score distribution if the same layout
of pipe gaps is used repeatedly. We also randomize the bird’s
starting distance from the first pipe to eliminate aliasing between
the parabolic jump pattern and pipe locations.

B. Simulate

Given a level created in the Generate step, we use a simple
heuristic to find a path through the pipes by flapping when the
bird reaches a line in the lower half of the gap (these lines
are drawn in red in Fig. 8). At each frame of the simulation,
we use a forward model to predict the next time t in the future
when the bird is pulled by gravity across this ideal flapping
location—the ideal player would flap at exactly this time t.

By reducing or increasing the standard deviation σ of our
precision model (see Section IV-A), the AI plays better or worse.
We quickly check if a variant is impossible by using perfect
precision σ = 0 ms on a limited number of simulations and
only continue testing if a majority of the these simulations score
highly.

To keep the AI from flapping faster than a human could
tap, t is limited by the number of actions per second. We also
tried limiting the AI lookahead to only use information that
has been visible on the screen for at least τ (the time it takes
for a player to react to a new event), but in our experiments, τ
had no effect except in extreme situations where humans would
perform poorly anyway (e.g., extremely fast birds).

For each simulation, the AI achieves a score equal to the
number of pipes passed before crashing, and we record each
score in a histogram. If a player crashes into pipe x or the
ground immediately before it, they will achieve a score of x
(the first pipe is x = 0). If the AI reaches a goal score xmax ,
we terminate the run so we do not get stuck simulating easy
games where the AI will never crash. Although Flappy Bird can
theoretically go on forever, human players will eventually make
a terminal mistake, but the AI can truly play forever unless we
enforce a maximum score. Using xmax between 20 and 100 for
Flappy Bird gave us a sufficient tradeoff between repeatability
and total simulation time.

The Generate and Simulate steps are run repeatedly until we
have enough samples to adequately analyze the histogram. Too
few samples cause an unstable estimate of difficulty, while too
many samples require longer simulation time. We use statistical

methods to calculate a minimum safe number of samples [1] by
bounding the acceptable expected standard error. For our dif-
ferent experiments, we used 20 000–100 000 samples, between
200 ms and 4 s on a single-core 2.8-GHz Intel Core i7 per experi-
ment. More difficult games take less time to simulate as the num-
ber of jump calculations performed is relative to the final score.

C. Analyze

After running the Generate and Simulate steps, we examine
the score distribution using survival analysis as described in
Section V and in (1). We use a histogram to calculate the proba-
bility f(x) that a player crashes into pipe x or the ground before
it. We then calculate the survival function S(x) by doing a cu-
mulative sum on the histogram and, finally, calculate the hazard
rate h(x) = f(x)/S(x). We must take special care when exam-
ining h(xmax) because it contains scores for every simulation
that passes successfully through xmax pipes and terminates the
simulation sample.

In the next section, we provide examples of various derived
hazard rates created by repeating the above methods using vari-
ous game parameters and player skill parameters. This provides
a detailed analysis of the types of hazard rates that might be
found in various games.

VII. HAZARD RATE ANALYSIS OF SIMULATED GAMES

Different variants of Flappy Bird give rise to different types
of hazards. We try different versions of the game, varying some
of the game parameters or player parameters and examine the
impact on the distributions of scores that result from the simu-
lation. While in Flappy Bird the game parameters are constant,
here we also test variants where the parameters change (e.g.,
each consecutive pipe gap is slightly smaller). We also vary
the modeled skill level of the AI, allowing us to 1) simulate
novice and expert players and 2) simulate players that learn and
improve each time they play. Each of these simulations results
in data that shows a different score probability distribution and
hazard rate distribution. We also use our techniques to examine
actual game data collected from over 106 million game plays of
flappybird.io.

A. Constant Difficulty: Exponential f(x); Constant Hazard

We start by examining variants that do not modify their pa-
rameters as the game progresses and, therefore, can have a con-
stant difficulty if one ignores learning effects. We show some
settings of Flappy Bird game parameters, which lead to a con-
stant hazard h(x) = λ. Using the score results from our sim-
ulations, the data shown in Fig. 9 show empirical evidence of
an exponential distribution and constant hazard rate when using
a constant pipe gap, constant skill level, and ignoring learning
effects.

In Fig. 9(a), we show the probabilities for four versions of the
game, each with a different pipe gap (decreasing in size from
the black line to the red line). Because we cannot describe every
possible variation in the scope of this paper, we focus here on the
pipe gap variable to illustrate the effectiveness of the method.
Four representative values were chosen to demonstrate the effect
and make the figure easy to understand. Exponential distribu-
tions become linear in log plots, so we can tell from Fig. 9(b)
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Fig. 9. Data collected from simulated games with nonvarying game and player
parameters (i.e., no learning); pipe gap is changed for each of the curves.
(a) Harder games (smaller pipe gap, in red) have a higher probability of getting a
lower score. (b) Log probabilities are linear, indicating exponential distributions.
(c) Constant hazard rates indicate constant difficulty.

Fig. 10. Data collected from simulated games with pipe gap decreasing by
the given percentage, constant skill, and no learning. (a) Smaller decreases are
easier games and more likely to exhibit higher scores. (b) Steeper hazard lines
indicate more rapid difficulty increases.

that the data indeed come from the exponential distribution. The
derived hazard rates, shown in Fig. 9(c), also increase, indicat-
ing as expected narrower gaps lead to a more difficult game.
There is some noise in the hazard function as we simulate us-
ing a stochastic process. This noise can be reduced with more
samples. The harder games have shorter lines, because it is un-
likely a player will achieve higher scores in them.

The constant hazard function h(x) = λ gives rise to exponen-
tial probability distribution f(x) = λe−λx [5], [11]. A constant
hazard means that the player is equally likely to die at every
moment in the game (i.e., constant difficulty). A more difficult
game has a higher λ. The mean 1/λ indicates that more difficult
games will have a lower average score.

Due to complicated interactions between the parameters (e.g.,
bird speeds that hop through multiple pipes on a single parabolic
arc), not all constant-parameter variants of Flappy Bird create
constant hazard rates. For example, at high speeds, the hazard for
the first pipe can be significantly easier, with a slight decreasing
trend in the hazard as scores increase. We discuss nonconstant
hazards in the next subsections.

B. Increasing Difficulty: Rayleigh Distribution; Linear Hazard

Most of the games do not have constant game parameters, but
instead increase in difficulty as the player makes progress into
the game. Fig. 10 shows four simulated games where we start
with a common pipe gap and multiply it by (1 − Δpg ) after each
consecutive pipe. The black line indicates the smallest decrease

Fig. 11. Data collected from simulated games with bird speed increasing by
the given additional amount after each point scored, assuming constant skill
and no learning. (a) Hazard is more curved than in Fig. 10(b). (b) Lines in
the Weibull plot indicates that the data matches the three-parameter Weibull
distribution.

in pipe gap and the red line is the largest decrease. We include
a lower bound on the pipe gap so that it does not get so small
that the bird cannot pass through it.

Fig. 10(a) shows the resulting empirical probability distribu-
tion for each variant. As expected, games with the slower pipe
gap decreases show a higher probability of a higher scores. The
bump in the probability plots indicates that the player is more
likely to achieve a score of around 3–5 than a score of 0, which
means the player will likely experience some success at the start
(unlike the constant hazard example which is equally difficult
everywhere).

In Fig. 10(b), we show the calculated hazard rate for each
variant. The hazards are approximately linear, although there is
a slight curve visible in the harder variants. Each line comes
to the same point because each variant starts out with the same
pipe gap value. Decreasing the pipe gap at a larger rate means
the game gets more difficult more quickly, indicated by a steeper
slope in the hazard plot.

We can theoretically model this with a linear hazard function
h(x) = a + bx, where a defines the game’s base difficulty and
b > 0 defines the rate at which difficulty increases. The theoret-
ical probability distribution is f(x) = (a + bx)e−ax−b/2x2

[5],
[11]. This is a two-parameter Rayleigh distribution with location
parameter (due to the a > 0 constant term).

C. Weibull Distribution; Power-Law Hazard

Instead of multiplying pipe gap by a scale factor as in the
previous section, here, we increase bird speed by adding a fixed
constant. We can see a curving hazard function in Fig. 11(a).
In Fig. 11(b), we show a Weibull plot of the data, which shows
the relationship between ln x and ln(−ln S(x)). In such a plot,
curves will be linear if the data follow a Weibull distribution,
which arises in survival analysis when the hazard rate follows
a power law [11], [59]. Since we observe lines in the Weibull
plot, we can be confident our data fit the Weibull distribution.

The Weibull distribution hazard is h(x) = c/b
(x − a/b)c−1 leading to a probability f(x) = c/b
(x − a/b)c−1exp[−(x − a/b)c ] [11]. a is a location pa-
rameter, b is a scale parameter, and c is the shape parameter of
the Weibull distribution. When c > 1, we have an increasing
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Fig. 12. Data collected from the same game with AIs of different skill. Smaller
standard deviation models higher skill. (a) Skill influences the shape of the
empirical probability distribution. (b) Skill affects the y-intercept and linearity
for the hazard, causing the probability distribution to shift and change shape.

hazard rate; c < 1 gives a decreasing hazard rate; c = 1 reduces
to a constant hazard rate.3

D. Different Skill Levels With Linear Hazards

We now explore how a single game variant with decreasing
pipe gap can be experienced by players of different skill levels.
We evaluate this for linear hazards as the effect of skill is more
interesting to analyze for this case than for constant difficulty
games, where the constant hazard simply scales. In Fig. 12, we
simulate the same variant, but use a different player skill for each
line. The black line is the highest skilled player and the lightest
blue line is the lowest skilled player. Recall that we increase
simulated player skill by decreasing the standard deviation of
the time adjustment.

The resulting empirical probability distributions from the ex-
periment, shown in Fig. 12(a), are especially interesting. We
can see that players of low skill may experience a very different
game from high-skilled players. The low-skilled players find
that a score of 0 is most likely; they do not experience early
successes to encourage them. The high-skilled players, how-
ever, have some early notion that they are doing well as their
probabilities increase at the beginning.

In Fig. 12(b), we see that the hazard rates for this variant are
no longer linear for the higher skilled players, as in Fig. 10. This
occurs because the hazard rate cannot be negative, so the curve
trends toward horizontal at lower scores as visible in the data
from higher skilled players [5].

It is important to reiterate that the shape of the score probabil-
ity distribution and hazard curves are dependent on the player’s
skill—the low-skilled player and high-skilled player do not ex-
perience the game in the same way. This quantitatively impacts
the designer’s ability to make a game that can please all players
without making some sacrifices on game balance.

E. Evidence of Varying Skill in Actual Game Distributions

We now apply survival analysis to examine the distribution of
scores from real-life (i.e., not simulated) game data. We examine
data obtained from flappybird.io [14], a popular web-based ver-
sion of the original Flappy Bird. As explained in Section VII-A,

3The Weibull distribution commonly occurs when a manufactured part, such
as a light bulb, becomes more likely to fail the longer it is used (c > 1).

Fig. 13. Actual, not simulated, player data from over 106 million plays of
flappybird.io matches a Generalized Pareto hazard. The hazard spike occurs
because, in Flappy Bird, the first pipe is easier to pass than the rest. (a) Hazard
rate is clearly not constant. (b) Reciprocal hazard is approximately linear.

Flappy Bird has a constant difficulty, so without learning, ef-
fects would exhibit a constant hazard rate and an exponential
probability distribution.

Fig. 13 shows the calculated hazard rates for March 2014,
when flappybird.io first launched, covering over 106 million
plays. The spikes at the left edge occur since the first pipe is
easier to score due to the original game scoring at the pipe center
and additional setup time for the first pipe. In our system, we
eliminated this spike by randomizing the starting location and
shifting the scoring position to the end of each pipe.

By deriving the hazard from the data, we see in Fig. 13(a)
that the hazard rate decreases rapidly, indicating that learning
and/or past experience may be a factor at making the game less
difficult for higher scoring players. The dataset does not provide
unique player ID to determine how each particular player is im-
proving over repeated plays; however, our analysis of Canabalt
and Drop7 scores with player ID does show power-law learning
is present [15]. Plotting score versus reciprocal hazard 1/h(x)
in Fig. 13(b) shows a linear relationship, indicative of the gen-
eralized Pareto distribution [60]. This distribution does not look
like the others we have examined, so we will now discuss an
explanation for the empirical reciprocal hazard.

F. Varying Skill Model: Generalized Pareto;
Hyperbolic Hazard

People generally improve over time as they repeatedly per-
form the same task [61] or game [15]. Learning can be modeled
with a power law function T = A + B(n + E)−R , where the
time T to perform a task decreases as the number of repetitions
n increases, A defines the best possible time to achieve the task,
B defines the performance on the first trial, R > 0 is the learning
rate, and E represents prior experience [61]. Power laws model
improvement that goes quickly at the beginning, but then slows
down as the player learns the easiest ways to improve, but then
takes more time to develop the ability to improve at higher level
skills [62].

Instead of modeling a decrease in time to complete a task,
we model a decrease in player error, which has similarly been
shown to follow power laws [61]. In our system, we model this
improvement by decreasing the standard deviation of the time
adjustment after each play. To generate the data, we simulate
5000 AI players, each repeating the game ten times. After each
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Fig. 14. Data collected from simulated games with constant game parameters
when modeling learning effects. (a) Empirical pdf follows the generalized Pareto
distribution (GPD). (b) Log plots show learning increasingly diverges from
exponential. (c) Hazard rates shows a decreasing trend. (d) Reciprocal hazards
1/h(x) derived from the data are linear, which fit the GPD.

of the ten times, the standard deviation is reduced to follow the
power law learning equation. We vary the learning rate R for
each test to explore the learning effect.

We can see the empirical results of modeling learning in
Fig. 14. The black curve has no learning, and the lightest green
curve has the fastest learning. From the empirical distributions
in Fig. 14(a), we cannot tell exactly what the distribution may
be, but the log plot in Fig. 14(b) shows that faster learning rates
cause a larger departure from exponential (as exponential curves
are lines in a log plot, and we can see an upward bend in the
lines with most learning).

By deriving the hazard from our data, as shown in Fig. 14(c),
we observe a decreasing hazard rate with increasing score x.
The decreasing behavior arises because with repeated plays, the
player is learning and improving, which makes higher scores
easier to obtain. The hazard decreases faster with a higher learn-
ing rate and reduces to a constant hazard for a zero learning rate.
Additionally, with higher learning rates, we will see more “ex-
pert” plays in the data; this helps model the behavior that good
players may play more games than poor players due to satis-
faction and positive feedback. We can interpret the decreasing
hazards as the game getting easier when you have players in-
creasing their skill, leading to a higher probability of higher
scores.

We can see in Fig. 14(d) further evidence that these curves
are hyperbolic (i.e., reciprocal linear) hazard rates, when
free parameters for inverting the hazard are set appropri-
ately. We theoretically model this using hyperbolic hazards
h(x) = a + b/x + c, which gives a probability distribution
f(x) = (a + b/x + c) e−ax(1 + x/c)−b , where a is related to
initial difficulty at the start of the game, b determines the learning
rate, and c allows us to have scores x = 0 and helps model pre-
vious experience. These equations match the generalized Pareto
distribution [60], [63].

It is important to note that while we are calling this effect
learning, it is also possible that there is additionally a wide vari-
ety of skill in the player population. Having α players improving

Fig. 15. Hazard curves tuned to appear more constant under conditions of
player improvement and increasing parameters. (a) For high learning, haz-
ards are relatively flat compared to Fig. 14(c). (b) Reciprocal hazard is also
flattened.

over β games is effectively the same as having αβ players of var-
ious skill each playing one game. To determine the difference
and the effect of each component would require a controlled
user study beyond what is available in the flappybird.io user
analytics data.

G. Tuning Difficulty/Hazard Curves

To counteract the decreasing hazard that arises in learning,
we can use a score-dependent game parameter to flatten out the
hazard rate curves. In Fig. 15, we see the effect of decreasing
the pipe gap, up to a lower bound, but now under conditions
of varying skill. This makes the game more difficult as scores
increase, offsetting the learning effect that reduces difficulty.
The chosen parameter shows relatively flat hazards and rela-
tively flat reciprocal hazards for high learning. By allowing the
parameters to vary with a more complicated function of score,
the hazard curve can be tuned as flat as the designer wishes.
However, as in Section VII-D, the low-skilled player finds the
game increasingly difficult; we cannot effectively use one set
of parameters for all learning levels to get effectively constant
hazards (i.e., constant perceived difficulty).

This method can be used to adjust the difficulty of a game so
that it appears to have constant difficulty, even though players
have varying amounts of skill. The technique here is signifi-
cantly different than dynamic difficulty adjustment (DDA) [26]
because we are analyzing the game statically. Our method does
not rely on runtime feedback from the player, but instead uses
simulated players to determine how a game should increase in
difficulty. One significant advantage to our approach is that one
can meaningfully compare scores between players on a leader-
board, because all players get the same game parameters, and
therefore, score can compare relative skill. In DDA frameworks,
comparing scores is difficult because the players are not playing
the same game variant due to the parameters fluctuating with
individual player performance.

VIII. EXPLORING GAME SPACE

Given the analysis techniques described in the previous
section, we would now like to efficiently explore the high-
dimensional space of possible games—an exhaustive search
over all parameters will not work. Through intelligent sampling
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Fig. 16. Increasing pipe gap pg decreases difficulty. Each line shows a differ-
ent setting for player precision σ. Lighter lines plot lower precision, modeling
poorer performance. Missing data points indicate where no players scored.

and visualization, we can gain insight about how each game pa-
rameter affects the difficulty curves (see Section VIII-A), adjust
parameters to target a specific difficulty (see Section VIII-B),
generate new versions (see Section VIII-C), or find k unique
variants as far apart from each other in game space as possible
(see Section VIII-D).

A. Visualization Methods

We use the following techniques to sample and visualize
difficulty changes as we explore different points in game space.
Visualization is a powerful data analysis technique that can
provide insights; we are trying to understand the structure of
game space, which is not revealed through black box exploration
alone. We start the search from the game parameters that define
the original Flappy Bird. We estimated the original parameters
by examining video capture of the game, carefully measuring
frame to frame differences.

1) Single-Dimensional Sampling: Beginning with the orig-
inal Flappy Bird, we keep each parameter fixed and vary one at
a time, exploring along each dimension, and sampling at fixed
intervals. Fig. 16 shows a plot of pipe gap pg versus constant
hazard λ. Each line uses a different value for player precision σ.
Lighter lines in the figure have a higher standard deviation, so
the AI makes more errors, and the game is more difficult for the
modeled player. As one expects, the model predicts that players
with less precision will find the same game more difficult to
play, and narrower gaps are harder for everyone.

2) Two-Dimensional Sampling: Varying in two dimensions
shows dependent parameters and can help designers find in-
teresting relationships between dimensions of game space. We
visualize these results using dot plots, displaying varying diffi-
culty by the radius and color saturation of each point.

For example, we see in Fig. 17 that jump velocity j and gravity
g are dependent. When gravity is too high or low relative to jump
velocity, the bird crashes into the floor or ceiling. In the middle,
gravity and jump velocity are balanced, and we see as they
increase together, the game gets more difficult—faster reaction
times are required as the bird is moving rapidly up and down.
Lower values of gravity and jump velocity give the player more
time to react and are easier to play. Holes and islands are due to
stochastic simulation and can be reduced with a larger number
of simulations ns .

Fig. 18 shows a hyperbolic-like relationship between bird
velocity vx versus pipe gap location range lr . As the bird moves
faster, there is less time to aim for the next gap. As we increase
the location range, the bird must on average travel further to
clear the pipes, so requiring more time to adjust.

Fig. 17. Sampling game space in two dimensions, jump velocity j versus
gravity g, shows a narrow band of playable games.

Fig. 18. Sampling in two dimensions, lr pipe gap location range versus vx

horizontal bird velocity. High speeds require a lower pipe range, so the player
has enough time to react to the varying gap locations.

Fig. 19. Differential evolution optimization helps us search for a target dif-
ficulty. Each point indicates a variant tested to find the target; X indicates
impossible games; Dot size and color indicates closeness to the target.

B. Exploration via Optimization

Global optimization algorithms are designed to efficiently
search parameter space to find the optima of a function. We
use optimization to find the parameters that will give a specific
hazard h(x) = λtarget by searching the parameter space to min-
imize (λ − λtarget)2 . Because we evaluate λ stochastically, we
are optimizing over a noisy function and cannot use strategies
that rely on differentiable functions and gradients [64]. Differ-
ential evolution [65] is a genetic search technique designed for
stochastic functions, and the DEoptim optimizer [66] quickly
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Fig. 20. “Frisbee Bird” was unexpectedly created by our system, an example of computational creativity. We show six simulated paths with jump points. The
player is wide and thin, with weak jump velocity and gravity that exhibits floating game feel. We manually adjusted the parameters shown here for visualization.

explores game space find our target with 0.1% accuracy in ap-
proximately 10–20 iterations using the default options for the
library. Fig. 19 shows that 280 points were explored to find a
hazard within 0.1% of λ = 0.155.

C. Computational Creativity

We interpret exploratory computational creativity [67], [68]
as the process of finding playable variants that are as different
as possible from the existing versions that have already been
explored. By allowing the system to vary every design param-
eter, unique combinations can quickly be explored by the AI
and optimizer. Unplayable levels are invalidated, and the sys-
tem only returns the games that can actually be played by hu-
mans. The designer then can examine the unique playable games
to find inspiration and new ideas. While a game is composed
of many parts, including visuals, audio, narrative, systems of
rules, level architecture, game play, and interactions between
those facets [69], here we only focus on the creative aspect of
designing novel game play.

Using the optimization algorithm described in Section VIII-
B, we generated interesting and surprising variants [1], such
as “Frisbee Bird,” which has a very different game feel from
the original Flappy Bird. This variant, shown in Fig. 20, was
created by allowing the optimizer to vary every static design
parameter, including speed, player width, player height, jump
velocity, gravity, pipe distance, pipe width, and pipe random-
ness. The optimizer returned a game with a wide flat bird, which
moves horizontally very fast but slow vertically and requires
short bursts of rapid presses followed by a long pause while
the bird floats in the air. This unexpected variant, discovered by
our system while using the optimization algorithm, still relies
on the mechanics and rules of the original but is a significantly
different play experience.

D. Finding k Unique Games

To help designers find new design possibilities, we look for
k unique variants in game space that are as far apart from each
other as possible [55]. The approach consists of generating a
bounded search space and running an optimization algorithm to
find the k games furthest apart in game space.

The search domain can be arbitrarily large, but as we are
focused on games that are playable for humans, we begin by
creating reasonable bounds on the parameter space to explore.
Although unbounded creativity could possibly lead to entirely
new games, the extra effort required to search the larger space
means many computational resources is wasted. We balance this
by setting boundary conditions on the game space. Many of our
parameters have natural bounds, as described in Section III.

Fig. 21. Using genetic optimization, we find games that are far apart from
each other in the 2-D game space. + indicates each generated playable game,
blue dots indicate the set for k = 8, and red triangles are for k = 5.

We begin by seeding reasonable bounds and then generat-
ing samples using a stratified sampling scheme that covers the
search space without clumping that may occur with uniform
random sampling. We can simulate each point and calculate its
difficulty and average play time. We mark as playable all the
games that have a difficulty, where between 1% and 60% of
players are expected to crash on the first pipe and the average
human play time is between 1 and 30 s. We eliminate games
with hazard close to zero, as they are too easy and we expect
them to be uninteresting and boring to players.

Next, we calculate the hypervolume bounding box that tightly
contains the playable games. For each dimension, we compare
the effective upper and lower bounds that lead to playable games
to the original search range. If the effective bounds are near the
guessed bounds, we could, if desired, expand the search area and
try again because it is possible that we have missed sampling
some playable games.

Now that we have a point cloud of thousands of playable
games variants, we would like to reduce this to a small number
of unique games. Clustering algorithms tend to find interior
representative points [55]. Instead, we want to find games further
apart, showing us what is possible on the frontiers of game
space—pushing the parameters to their extremes.

To find games as far apart from each other as possible, we
find a subset of k games that maximizes the minimum Euclidean
distance (in normalized parameter space) between any pair of
points in the set. We use a genetic search to evolve the k elements
to be included in the set. By running for more generations, the
examples approach optimally unique. Fig. 21 shows how this
technique finds unique game space points (k = 5 for the red
triangles and k = 8 for the blue circles).
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Fig. 22. Game variants discovered by finding k = 4 most of the unique games.

We present several novel Flappy Bird variants discovered by
our methods in Fig. 22. Varying all nine static game param-
eters, we created four unique games. These appear to us to
approximate the creativity a human designer might have used if
tasked with designing four unique variants.

IX. DISCUSSION AND CONCLUSION

One long-term goal of this area of research is to eventually
provide game designers with tools and methods that can help
them design better games and to expand their creativity via
computer-aided game design tools. We envision designers and
computers working together to craft a better player experience.

In this paper, we argue that using player modeling and survival
analysis helps us better understand the relationship between
game parameters and player experience of difficulty in minimal
action games. The algorithms presented here can be used by
game designers to tune games and explore parameter variations.
We show the utility of using simple AIs, which make human-
like errors for automated playtesting to explore game space.
The hazard rate, which is analogous to a difficulty curve, allows
the designer to estimate how players will experience difficulty
as the game progresses. This allows designers to explore the
game space of playable games to find unique variants, to better
understand the effect of game parameters, to adjust parameters
to tune difficulty as a player progresses, and to evaluate how
players with different levels of skill will experience a game.
Future experiments to validate that these techniques actually
help designers is a necessary next step.

The framework presented here can be used for many types
of minimal action games, not just Flappy Bird. However, the
player model presented primarily models dexterity, player ac-
curacy, and timing errors: therefore, it is most suited for action
games where difficulty is determined by motor skill, not by
path planning or strategic decisions. There are various kinds

of difficulty, such as strategic difficulty, requiring deep look-
ahead and search, or representational difficulty, which makes
it challenging to visually determine how pieces fit together to
solve a puzzle. Various types of difficulty require new models
to accurately simulate and measure their effects.

As the difficulty and playability of the game is determined by
the AI, it will only find games that it can play effectively. How-
ever, there may be games interesting to human players which
are passed over because of the AI’s assumptions and deficien-
cies. The method of search can influence which points in game
space are discovered [68]. Additionally, the methods to find
unique variants are focused on the distance in the game param-
eter space, which is one aspect that makes games interesting
to players and designers, but “interesting” has a much broader
meaning and is significantly more complex to quantify.

Our survival analysis only looks at a single dimension, d,
which describes the score distribution of our simulation. Future
work should explore additional output variables such as time
played, optimizing for multiple dimensions at once. In theory,
we expect a high-dimensional game space to have dependencies,
which can be squeezed into a lower dimensional space using
model reduction techniques, finding the intrinsic dimensionality
of a game space [17], [18]. This would reduce the number of
knobs a designer needs to adjust. In addition, lower dimensional
spaces are likely faster and easier to search.

All Flappy Bird variants can be seen as a point in a much larger
design space. This research and the developed methods are a step
toward exploring this space of computationally assisted designs,
where we can modify rules and parameters, explore games of
strategy and dexterity, and combine difficulty with human player
preference and aesthetic judgment.
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